IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020 813

Exploring Segment Representations for Neural
Semi-Markov Conditional Random Fields

Yijia Liu

Abstract—Many problems in natural language processing (NLP)
can be cast as the problem of segmenting a sequence. In this
article, we combine the semi-Markov conditional random fields
(semi-CRF) with neural networks to solve NLP segmentation prob-
lems. We focus on the segment representation in neural semi-CRF
which is important to the performance. Based on our preliminary
work in Liu et al. [1], we represent a segment by both encoding
the subsequence and embedding the segment string. We conduct
a systematic study of the utility of various components in subse-
quence encoding and propose a method of constructing and de-
riving segment string embeddings. Extensive experiments on three
typical segmentation problems, namely, shallow syntax parsing,
named entity recognition, and Chinese word segmentation are
conducted. The results show that we can achieve equally-performed
subsequence encoding with a three times faster concatenation net-
work compared to previous work. The results also show that the
segment string embeddings help our neural semi-CRF model to
achieve a macro-averaged error reduction of 13.15% over a strong
baseline using deep contextualized embeddings and bidirectional
long-short-term memory CRF, which also show the usefulness of
semi-CRF even with contextualized embeddings. These results are
competitive with the state-of-the-art segmentation systems.

Index Terms—Neural network, semi-CRF, segment represen-
tation, shallow syntax parsing, named entity recognition, Chinese
word segmentation.

1. INTRODUCTION

ANY problems in natural language processing (NLP)
M involve segmenting and assigning tags to a sequence of
observations, like shallow syntax parsing [2, chunking], named
entity recognition [3, NER], opinion extraction [4], disfluency
detection [5], and Chinese word segmentation [6], [7, CWS].
Properly representing the segment (i.e., subsequence), such as
chunk in chunking, entity in NER, and Chinese word in CWS; is
important for good segmentation performance. Sequence label-
ing models like conditional random fields [8, CRFs] are widely
used for these problems, which label an individual observation
with a segment boundary. Compared with sequence labeling
that labels the boundary as a proxy to the segment, models
that directly encode a segment are attractive because they can

Manuscriptreceived January 18,2019; revised July 5,2019, October 21,2019,
and December 22, 2019; accepted December 30, 2019. Date of publication
January 8, 2020; date of current version February 11, 2020. This work was
supported by the National Natural Science Foundation of China (NSFC) under
Grant 61976072, Grant 61632011, and Grant 61772153. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Eric Fosler-Lussier. (Corresponding author: Wanxiang Che.)

The authors are with the Research Center for Social Computing and Informa-
tion Retrieval, Harbin Institute of Technology, Harbin 150001, China (e-mail:
yjliu@ir.hit.edu.cn; car @ir.hit.edu.cn; qinb@ir.hit.edu.cn; tliu@ir.hit.edu.cn).

Digital Object Identifier 10.1109/TASLP.2020.2964960

, Wanxiang Che, Bing Qin, and Ting Liu

effectively utilize the segment-level features like “entity length”
in NER. The semi-Markov conditional random fields [9, semi-
CRF] is one of the models that directly encode a segment. In
a semi-CRF, given a sequence of observations, its conditional
probability of a semi-Markov chain is explicitly modeled, in
which each state corresponds to the segment. The practice of
modeling a state in the semi-Markov chain makes semi-CRF a
natural choice for segmentation problems.

To achieve good segmentation performance, conventional
semi-CRFs require carefully hand-crafted features [4], [6], [9].
However, manually designing the features is tedious and in-
complete, which call for automatic feature extraction. With the
success of representation learning in NLP, research efforts have
been made to automatically extract features with neural network
in semi-CRFs. Kong et al. [10] proposed a segmental recurrent
neural network (SRNN) to embed the subsequence of input
as features, and the input vectors are context-dependent via
a bidirectional long-short-term-memory [11, biLSTM] encod-
ing. They tested their model on handwriting recognition and
CWS. Zhuo et al. [12] proposed a gated recursive convolu-
tional neural network (grConv) to encode the subsequence of
context-independent input vectors, and reported improved NER
performance. Both these works emphasized the importance of
representing a segment with neural network. However, a system-
atic study of the utility of various components which comprise
the neural semi-CRFs (see Fig. 2) under the same experimental
settings was missing. In addition, the whole segment, either used
as an input feature or as a lexicon indicator, can be important to
evaluate a segmentation. Kong et al. [10] and Zhuo et al. [12]
both treated the segment as a subsequence of input, the idea of
representing the segment with respect of its string form was less
mentioned.

In this paper, we conduct a thorough study on the problem
of representing a segment in neural semi-CRFs. Our efforts of
segment representation fall into two folds. In the first fold, we
represent the segment by encoding the subsequence of input. We
study the necessity of context encoding for the input representa-
tion. We also propose four network architectures to encode the
subsequence as alternatives to SRNN and grConv. In the second
fold, we represent the segment by embedding the segment string
and propose to derive these segment string embeddings from
automatically segmented data. Extensive experiments on three
typical NLP segmentation tasks—chunking, NER, and CWS are
conducted. The results show that context encoding plays an
important role in neural semi-CRFs. Our concatenation alterna-
tive achieves comparable performance with SRNN and grConv,

2329-9290 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6311-9955
mailto:yjliu@ir.hit.edu.cn
mailto:car@ir.hit.edu.cn
mailto:qinb@ir.hit.edu.cn
mailto:tliu@ir.hit.edu.cn

814 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

while running more than 3 times faster. The results also show
that our neural semi-CRF benefits from segment string embed-
dings, with a macro-averaged error reduction of 13.15% over a
strong baseline using deep contextualized embeddings [13] and
biLSTM CREF [14]. In the evaluated tasks, our model achieves
competitive performance with the state-of-the-art (SOTA) seg-
mentation systems and is 0.43 points lower than the aggregation
of the results of these systems. Major contributions of this paper
include:

® We thoroughly study the subsequence encoding for seg-

ment representation and propose a simple and accurate
concatenation network (§IV-A). We also propose to use
segment string embeddings as the segment representation
and find that it leads to consistent improvements (§IV-B).

® We conduct extensive experiments (§V) to reveal the im-

portant components in neural semi-CRFs. The experimen-
tal results show the importance of representing context
and the effectiveness of our concatenation segment en-
coder. The results also show that consistent improvements
are achieved with our segment string embeddings over a
strong baseline using deep contextualized embeddings and
biLSTM-CREF. The results are competitive with the SOTA
systems.

Some preliminary results have been reported at our previous
work [1]. This paper extends our previous work with a deep
study on the effect of different components in neural semi-CRF
(§IV-A) and emphasizes the importance of context encoding.
This finding also inspired us to enhance the corresponding
encoding with the deep contextualized word embeddings (§IV-
A1l). In addition to the CNN and concatenation network, we
proposed two more networks (§1V-A3) and introduced grConv
into our comparison (§V-B). An additional study on the usage
of segment embedding alone (§IV-B) presents a thorough un-
derstanding of the segment embeddings. Recent study [15] on
the non-deterministic nature of neural network training suggests
conducting of multi-seeded experiment runs and reporting the
average score. We follow this idea and re-run the experiments
in our previous work. The new results challenge our former
discussions on the use of different baseline segmentors by
presenting negligible performance gaps. Therefore, we remove
the corresponding part in this version. A new segmentation
data—CoNLLOO chunking dataset was introduced to extend
our evaluation (§V-A). Additional analysis shows the segment
diversity as a factor for segment string embedding to work
well (§V-D). Our new PyTorch implementation is available at
https://github.com/Oneplus/semiCRF.

II. PROBLEM DEFINITION

Fig. 1 shows examples of NER and CWS. For the input
word sequence in the NER example, its segments (“Michael
Jordan”:PER, “is”:NONE, “a”:NONE, “professor”:NONE,
“at”:NONE, “Berkeley”:ORG) reveal that “Michaels Jordan™ is
aperson name and “Berkeley” is an organization. In the CWS ex-
ample, the subsequences (“Jfi§ #</Pudong,” “J- % /development,”
“Lj/and,” “%& i%/construction”) of the input characters are
recognized as words. Both NER and CWS take an input sequence
and segment it into disjoint subsequences.

Michael Jordan is a professor at Berkeley Person
@ None
Michael Jordanlis|a|professor|at|Berkeley Organization
WAFRSEE T WA/ TR/ 5/ &R

Pudong development and construction

Fig. 1. Examples for named entity recognition (above) and Chinese word
segmentation (below).

Formally, for an input sequence x = (z1, ..., 7|x|) of length
|x|, a segment of x is defined as (u,v,y) which means the
subsequence (T, ...,Z,) is associated with label y. A seg-
mentation of x is a segment sequence s = (si, ..., s|s), Where
s; = (uj,v;,y;) and uj41 = v; + 1. Given an input sequence
X, the segmentation problem can be defined as the problem of
finding the most probable segment sequence s.

We also define the segment string x,.,] of a segment (u, v, y)
as a string concatenation of the tokens in the segment with
a special delimiter. Taking the NER example in Fig. 1 as
an illustration, the subsequence of the segment (1,2, PER) is
(“Michael,” “Jordan”) while the corresponding segment string
is “Michael_Jordan”.

III. NEURAL SEMI-CRFS

The semi-CRF (see Fig. 2) models the conditional probability
of sonx as

1
p(s|x) = 7 exp{W - G(x,s)},
where G(x, s) is the feature vector, W is the weight vector, and
Z(x) = > gegexp{W - G(x,s')} is the normalization factor
of all possible segmentations S over x.

By restricting the scope of the features within a segment
and ignoring the label transition between segments (i.e., zero-

order semi-CRFs), G(x,s) can be decomposed as G(x,s) =
E‘js‘:l g(x,s;) where g(-,-) maps a segment s, into its rep-
resentation. Such decomposition allows using an efficient dy-
namic programming algorithm for inference. To find the best
segmentation in semi-CRFs, let o; denote the log probability
of the best segmentation ending at j, and o; can be recursively
calculated as

aj = max U(j—1,j,y)+a; 1, (D

l=1...Lyy

where L is the manually defined maximum segment length and
U(j—1,j,y) =W -g(x,(j —,7,y)) is the transition weight
for segment (j — I, 7, y).

Previous semi-CRF works [3], [4], [6], [9] parameterize
g(x, s) as a sparse vector, each dimension of which represents
the value of the feature function. Kong er al. [10] pioneered
in parameterizing g(x,s) with an RNN (SRNN, see Fig. 2).
They first obtain the vector sequence (vi, ..., Vi) of x with
a lookup table ¢(-) that maps an input symbol into its vector.
Then, they feed (vq,... ,v‘x‘> into a biLSTM to obtain the

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING SEGMENT REPRESENTATIONS FOR NEURAL SEMI-MARKOV CRF 815

YVi-1 Vi
segment string segment string H)
edding bedding El
Hlui_1i_1] KXlugvy] E E E
subsequ.ence subsequ.ence SRNN SCNN grConv
encoding encoding
context representation !& A
é é é é é é input repr. E
Xu;_, Xy, x SConcat. SAve. SMinus
Fig. 2. An illustration for the framework of our neural semi-CRF model, along with the composition functions: SRNN, grConv, and our SAve (Eq. 5), SCNN

(Eq. 6), SConcat (Eq. 7), and SMinus (Eq. 8).

contextual representation (cq, ..., c‘x|>, Finally, they calculate
the representation g(x,s;) of a segment s; = (u;,v;,y;) by
feeding the subsequence (cy,,...,cC,,;) int another biLSTM.
The concatenation of the final hidden layers from forward and
backward LSTMs is used as g(x, s). Zhuo et al. [12] proposed
another network architecture — gated recursive convolutional
neural network (grConv, see Fig. 2), which extracts the segment
representation from a pyramid of representations recursively
built from (v, ..., vy,).

Kong et al. [10] and Zhuo et al. [12] both showed the possibil-
ity of a reasonable segment representation with a neural network
that encodes a subsequence of input vectors in semi-CRFs.
However, their models diverged in the input vectors (Kong et.
al’s input vectors are context-dependent while Zhuo et al.’s are
context-independent.) Moreover, only a limited set of networks
was tried in these works. The whole segment was also not
properly represented.

IV. SEGMENT REPRESENTATIONS FOR NEURAL SEMI-CRFS

Representing a segment (i.e., parameterizing ¢(x,s)) lies
at the core of neural semi-CRFs. In this paper, we study the
representation problem in two directions: 1) representing the
segment by encoding a subsequence of input, and 2) representing
the segment by embedding its string form.

For the segment representation by encoding the subsequence,
three components comprise the whole model:

1) an input representing component (§1V-Al) that converts
the input sequence X = (z1,...,Z|) into its context-
independent vector sequence (V1,. .., Vix|);

2) acontext representing component (§1V-A2) that computes
the context-dependent vector sequence {(c1, . . . c|x|> from
<V13 cee 7V\x\>;

3) asubsequence representing component (§1V-A3) that en-
codes the context-dependent subsequence (c,, . . ., ¢,) of
the segment (u, v, y) into a vector.

In this paper, we tried different ways of encoding inputs,
context, and segments.

For the segment representation by embedding the segment
string, a lookup table gives a vector representation to the string
Ty of a segment (u,v,y). The major problem is how to
build segments and how to learn their embeddings. We explore
different ways of building segments in Section IV-B.

We separate the segment representation into two types be-
cause the forms of their inputs are quite different (sequence vs
string). The difference is analogous to the difference between
character based word embedding method, such as FastText [16]
and the word-type based word embedding method, such as
Word2Vec [17]. Such difference has motivated the use of dif-
ferent word representation methods and hopefully will motivate
the use of different segment representation methods.

A. Representing Segment by Encoding the Subsequence

1) Input Representation: Embeddings are the foundation of
the neural network-based approach. In this paper, we implement
it as a lookup table ¢(-) that stores the mapping between the
string of the input observation and its vector representation (i.e.,
static embeddings).

In addition to the lookup table, deep contextualized embed-
dings as an emerging and effective technique have helped to
improve arange of NLP models. In this paper, we also tried using
one of the successful techniques — Embeddings from Language
Models [13, ELMo] as the input representation. We use ELMo
in a “feature” manner, where fixed vectors are extracted from
the ELMo model trained on the unlabeled data.’ Formally, the
ELMo-based input representation is calculated as the layer-wise

'We use ELMo rather than Bidirectional Encoder Representations from
Transformers [18, BERT] mainly because previous studies report the successful
application of ELMo as feature while BERT was mainly used as initialization.
Since we focus on the feature-based usage of the contextualized embeddings,
we choose the ELMo in this paper and leave BERT for future study.

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

816 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

%
weighted summation of the concatenated () hidden units h
and from the forward LSTM and the backword LSTM,

respectively. It can be described as

(b(ELMO)(xZ.) = ELMo(x, . .. ,Z’\x|)i

- Visj (Wehy), O
j=1

_ -
where v and s; are trainable scalars and other parameters of h

and % are fixed. We encourage the reader of this paper to read
the original ELMo paper [13] for more details.

We treat ELMo as an input representation, although it can
generally be considered as utilizing context information. We
argue that ELMo’s representation of contextual information is
learned over unlabeled data rather than a specific task and it is
closer to static embeddings in this case.

2) Context Representation: Kong et al. [10] and Zhuo et al.
[12] differ in the ways of representing context. Kong et al. [10]
uses a biLSTM to obtain the contextual vector of an input obser-
vation, while Zhuo et al. [12] only uses the context-independent
input vectors. The diversity of their approaches raises the ques-
tion regarding whether or not encoding context matters in neural
semi-CRF. In this paper, we minimize the efforts of feature
engineering and follow Kong et al. [10], using the biLSTM-
encoded context as the context representation. Formally, it can
be described as

<C1, ey C‘x‘> = biLSTM(Vl, ce ,V‘x‘). (3)

To test the necessity of context representation, we also tried
only using the input vectors as the context representation, which
means

- Vi) “)

(C1- -) = (Vi

3) Segment Representation by Encoding Subsequence: After
obtaining {(cq, . . ., Clx|), we use a neural network to construct the
representation subsequence (cy, . . ., C,) of a segment (u, v, y)
into a fixed-size vector of the segment. Due to the nature of
the various lengths of a segment, such a neural network should
have the ability to take subsequence of the various lengths. Kong
et al. [10] handled the variant lengths with an RNN while Zhuo
et al. [12] handled it with a gated recursive convolutional neural
network. In the following section, we propose four alternative
networks, and all of them are able to handle the variant length
nature.

a) Segmental Average (SAve): The neural bag-of-
words [19] is a sentence modeling method that sums up
the vectors of words to form a fixed-size sentence vector.
Cai and Zhao [20] also reported a positive result using a
similar technique to model words in CWS. By utilizing its
advantage over the variable length inputs, we propose to use
average-pooling to form the segment representation s*9) as

1 v
(eq) _ L) s
s vﬂHl;cl (5)

By using the average, we hope to eliminate the scale imbalance
in s(*9) induced by the variant numbers of inputs.

b) Segmental Convolutional Neural Network (SCNN):
The pooling mechanism in SAve fully ignores the order and
relative position of subsequence of inputs within one segment.
However, the positional information can be important to rec-
ognize a segment. Using a convolutional neural network [21,
CNN] to encode the n-grams can be a remedy. In this paper,
we use the temporal CNN that applies filter functions to “slide”
over the input units in a segment and uses pooling to construct
outputs of filter functions into the representation of a segment.
The segment representation with a CNN can be formalized as

-1 Cp). (6)

In practice, naively applying filter functions to a segment is
time-consuming for obtaining the representation. In this paper,
we propose an approximation by applying filters to the whole in-
put sequence and use the pooling function defined on a segment
to collect segmental respresentation. This approximation speeds
up the representation process and makes the representation of a
segment aware of its surrounding context.

d) Segmental Concatenation (SConcat): To fully preserve
the order of inputs in one segment, we propose to use the
concatenation as the segment representation. To handle variable
lengths of inputs, we make use of the maximum length L
for the inference (Eq. 1) and pad with zero to transform the
variable-length inputs into a fixed-size one as

st — pyeeoncadc o, d 0@---®0), (7)
———

L—(v—u+1) zeros

st — Conv(c,, ..

where W coneat < R (Lxlel)xlel projects the concatenated vector
into the low dimension. Concatenation preserves the positions
of inputs and speeds up the segment representation process since
it does not involve matrix multiplication.

Concatenation can be treated as a CNN with a filter of
L-width. In this case, it lies on the other end of the spectrum
compared with SAve with respect to preserving the input order.

c) Segmental Minus (SMinus): Previous syntax parsing
works [22], [23] witness an interest in representing a segment
by the subtraction between vectors of the head and tail words,
especially when combined with biLSTM context encoding of
the sentence. A similar effort has been made on Chinese word
segmentation [24]. In this paper, we follow these works and
represent the segment with the elementwise difference of context
vectors of the segment boundaries, as

s(e) = (cu — Cy). (8)

As mentioned in Wang and Chang [22], the minus-based seg-
ment representation relies on the sequence modeling ability
of LSTM. Therefore, we only apply SMinus to the biLSTM
encoded context representation (Eq. 3) without considering that
of Eq. 4.

B. Representing Segment by Embedding the Segment String

For a segmentation problem, a segment is generally consid-
ered more informative and less ambiguous than an individual

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING SEGMENT REPRESENTATIONS FOR NEURAL SEMI-MARKOV CRF 817

word. Incorporating features that measure the whole segment,
like [“Michael_Jordon” is in the gazetteer], has usually resulted
in a performance improvement in previous semi-CRF works [4],
[9]. Segment representations in Section IV-A only model the
segment as a subsequence of input. It is expected that the segment
embedding that encodes the entire string as a vector can be an
effective approach for segment representation.

In this paper, we treat the segment string as a segment-level
input and use a lookup table to map its string to the vector rep-
resentation. Formally, we define the segment string embedding
of s = (u,v,y) as

S = D a1,

where ¢¢®)(.) is the segment lookup table. It stores the mapping
between the segment string, such as “Michael_Jordan,” and its
vector. For the segment string not included in ¢*¢® (), we map
it to a special unknown token. We use the superscript (seg) to
differ the segment lookup table from the input lookup table ¢ (-)
in Section IV-A.

Using such segment representation in semi-CRF is straight-
forward. In this paper, we tried two different settings, including
1) using the segment string embedding as the only representa-
tion and 2) combining it with the representation calculated by
composing input observations. The effect of the segment lookup
table ¢*°®(.) resembles a group of lexicon-based segmentation
methods, where the quality of lexicon greatly influences the
model’s performance. Since one of the goals in a segmentation
problem is to correctly recognize the boundaries, a string being
included in the segment embeddings lookup table presents a
strong clue for it to become a segment. Moreover, the practice
that only collects the gold segments in the training data increases
the risk of overfitting.

An ideal lookup table should recall more segments and also
includes some ungrammatical segments that help to prevent
overfitting the training data. We propose two methods for lookup
table construction. One of them constructs the lookup table
from training data, which uses the gold segment along with the
most frequent ungrammatical segments in the training data.’
Another method constructs the lookup table from unlabeled
data, which uses a baseline segmentation model to analyze
large-scale unlabeled data and constructs the lookup table with
the automatically generated segments. The second method can
be traced back to a line of semi-supervised research, which use
features derived from auto-analyzed data to enhance the baseline
model [25], [26]. The underlying intuition is that it encourages
the model to consider the gold segments and the most probable
ungrammatical segments according to the baseline.

In addition to the usage of lookup table construction, unla-
beled data can also be used to derive segment string embed-
dings in an unsupervised fashion. In our second method, after
obtaining the recognized segments on the unlabeled data, we
concatenate the tokens in a segment to form a new entry and
learn the segment string embeddings of these entries with the
Word2Vec algorithm [17] on the same data. Fig. 3 illustrates our
pipeline of mining the segments and learning the segment string
embeddings from the unlabeled data. We first apply a baseline

2By “ungrammatical segment,” we mean the segment of incorrect boundary.

Unlabeled data

Auto-segmented data
Michael Jordan is a Michael Jordang is a
professor at Berkeley baseline professor at Berkeleys
Albert Einstein was segmentor Albert Einsteing was born
born in Ulm in Germany in Ulm in Germanyg
\Y string embeddings /
Michael Jordang is
0.3,...,1.3 a k Skip-
IERET) ip . .
Einsteing 02,...,12 7 oo w/ grgy | Michael Jordans
Berkeley 0.7,...,0.1 /
<bos>

Fig. 3. An illustration of our pipeline of mining segment and learning the
segment string embeddings.

segmentor to the unlabeled data and obtain the automatically
segmented data. The tokens of a recognized segment are con-
catenated and labeled with a special S tag.®> The surrounding
tokens are also fed into the Word2Vec algorithm to learn the
segment string embeddings, but not collected into the lookup
table as shown in Fig. 3. The unsupervisedly learned segment
string embeddings can either be used as a fixed representation
or as the initialization. When used as a fixed representation,
the segments derived from the unlabeled data are transduced to
the specific task, thus can mitigate the data sparsity of unseen
segments in training.

We need to note that using the baseline segmentor to mine
segments does not resolve the sparsity problems. A typical
case is that the larger the segments get, the harder it is to
correctly mine their boundaries, and even harder to estimate the
embeddings because of infrequent occurrence.* We conclude
the sparsity problems as the diversity of segments of a certain
dataset and study the relation between segment diversity and
relative improvements in Section V-D.

C. Model Details

In this section, we describe the detailed architecture for our
neural semi-CRFs.

1) Input Representation: To obtain the input representation,
we use the technique in Dyer et al. [27] and separately use two
parts of the input embeddings: the fixed pre-trained embeddings
#™(.) and fine-tuned embeddings ¢ (-). Two of them are
concatenated to form the final input unit representation as

v = ¢(ﬁx)(x) o gf)(mne)(l‘). 9)

For chunking and NER, whose labeled data also has part-of-
speech (POS) tags as inputs, we use the POS embeddings
¢ (POS(z)) as an additional input representation and con-
catenate it to form v.>

3In this paper, we focus on the segment string embedding’s effect on iden-
tifying the boundary without considering the label. In practice, we remove the
labels of the auto-recognized segments on the unlabeled data.

“The embedding of (unk) are assigned to the un-recalled segments.

>The ¢® (POS(z)) embedding is computed as a lookup table based on the
POS tags and this table is randomly initialized during training.

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

818 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE I
THE HYPERPARAMETER SETTINGS

TABLE II
STATISTICS OF LABELED DATA

dim of fixed input unit embedding ¢ (for English) 300
dim of fixed input unit embedding ¢(*) (for Chinese) 100
dim of fine-tuned input unit embedding ¢(ne) 32
dim of ELMo ¢®LMo) | 1,024
dim of POS embedding ¢ (%) 12
dim of label embedding ¢(1abel) 20
dim of duration embeddings ¢ 4
biLSTM hidden layer size 128
number of layers in biLSTM (Eq. 3)
number of layers in biLSTM for SRNN 1
maximum segment length 10
segment string embedding ¢(¢8) 50
batch size 32
dropout rate 0.1

After obtaining v, we encode each the context of each word
either with the function in Eq. 3 or the function in Eq. 4.

2) Segment Representation: Given a segment s = (u, v, y),
we feed its context representation (c,, ..., c,) into a segment
encoding network S(¢9)(.) (i.e., Eqs. 5-8) to obtain s(**9) and
feed the substring x| into ¢*€(-) to obtain glemb) g(sea) apd
s(¢mb) are either used separately or combined via concatenation.
Two additional embedding functions ¢ (-) and $(2*) (.) are
used, where ¢(*")(.) is used to convert the discrete segment
length to its length vector and ¢ (.) is used to convert label
y to its vector. Finally, these vectors are concatenated and fed
into a linear projection with ReLU activation to form the segment
representation, which means

g(rep) — S(Seq)(cu’ e Cy) @ ¢(seg)(x[um])

® (b(len)(u _ ’U) @ ¢(label)(y)
g(x,5) = ReLU(Ws 4 p).

Throughout this paper, we use the same hyperparameters for
different experiments as listed in Table I. We use 6 types of filters
with widths from 1 to 6 for the CNN (Eq. 6).°

Training the parameters is accomplished by maximizing the
log-likelihood

arg max Z log p(si | x;)
(2

over the training data. When training the model, the recurrent
dropout [28] is applied to all the biLSTMs. Adam [29] with
default settings is used to train the parameters in our exper-
iments. The best iteration is determined by the development
performance.

V. EXPERIMENT

A. Tasks

We conduct our experiments on three typical NLP segmen-
tation tasks: chunking, named entity recognition and Chinese
word segmentation.

6Corresponding numbers of filters are: 32, 32, 32, 16, 8, 8.

CoNLL0OO CoNLLO03 CTB6 PKU MSR
number of sentences

training 8,936 14,987 23,416 17,149 78,232

dev. 1,844 3,466 2,077 1,905 8,692

test 2,012 3,684 2,796 1,944 3,985

number of tokens
training 211.7K 204.6K 1,0555K 1,662.6K 3,633.3K
dev. 444K 51.6K 100.3K 163.9K 417.1K
test 47.4K 46.7K 134.1K 172.7K 184.4K
TABLE III

STATISTICS OF UNLABELED DATA

RCV1 Chinese Gigaword-v5
number of sentences 8.18M 4.82M
number of words ~ 131.22M 473.73M

To evaluate chunking, we use the CoNLLOO text chunking
shared task dataset [30], which uses Section 15-18 of Wall
Street Journal data (WSJ) as training data and Section 20 as
test data. Due to the lack of development data, we use Section
22 of WSJ as the development set and convert constituency trees
into chunking data with chunklink.pl.” To evaluate NER,
we use the CoNLLO03 dataset [31] and follow the standard train-
ing/development/test split. We evaluate CW'S on three simplified
Chinese datasets: PKU and MSR from 2nd SIGHAN bakeoff and
Chinese Treebank 6.0 (CTB6). For the PKU and MSR datasets,
the last 10% of the training data are used as development data
following Pei et al. [32]. For CTB6 data, the recommended data
split is used. We convert all the double-byte digits and letters in
the PKU data into their single-byte form. All the segmentation
performances are evaluated by the F-score.® The statistics of the
dataset are shown in Table II.

We use the 840B GloVe embeddings released in Pennington
et al. [33] as fixed word embeddings for English. We use the
Word2Vec toolkit released by Ling ef al. [34] to obtain fixed
Chinese character embeddings on Chinese Gigaword Version 5
corpus (Chinese Gigaword-v5).’

Unlabeled data are used to train and segment string embed-
dings. For English data, we use RCV1 as the unlabeled data.
For Chinese, we use Chinese Gigaword-v5. The statistics of
unlabeled data are shown in Table III.

Reimers and Gurevych [15] pointed out that neural network
training is nondeterministic as it usually depends on the seed
for the random number generator. To control for this effect, they
suggest reporting the average of differently seeded runs. In all
our experiments, we set the number of runs to 5.

B. Baseline

We compare our model with the following baselines:

7[Online]. Available: https:/github.com/esrel/DP/blob/master/bin/chunklink.pl

8For chunking and NER, we use conlleval script to calculate the F-score.
For the Chinese word segmentation, the score script in 2nd SIGHAN bakeoff
is used.

9[Online]. Available: https:/github.com/wlin12/wang2vec

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING SEGMENT REPRESENTATIONS FOR NEURAL SEMI-MARKOV CRF 819

TABLE IV
THE CHUNKING, NER, AND CWS RESULTS OF THE BASELINE MODELS AND OUR NEURAL SEMI-CRF MODELS WITH DIFFERENT INPUT COMPOSITION
FUNCTIONS. THE NUMBER AFTER 4 SHOWS THE STANDARD VARIANCE. SPD. REPRESENTS THE INFERENCE SPEED AND IS EVALUATED BY THROUGHPUT
AGAINST THAT OF NN-LABELER, THUS THE HIGHER, THE BETTER'?

model CoNLLO00 | CoNLLO3 CTB6 PKU MSR Ave. spd.
NN-Labeler 93.31+014 | 88.46+018 | 93.12+008 92.87+010 95.19+04s | 92.66 | 1.00x
NN-CRF 93.84+000 | 88.83+018 | 93.64+000 93.57+004 95.47+007 | 93.15 | 0.60x
raw embeddings (Eq. 4)
SRNN 93.31+014 | 83.37+029 | 94.35+014 94.26+007 96.51+007 | 92.36 | 0.07x
grConv 93.07+012 | 81.64+042 | 94.47+007 94.24+013 96.10+00s | 91.90 | 0.14x
SAve 90.15+024 | 81.75+0s50 | 91.38+019 90.614008 92.264020 | 89.23 | 0.45x
SCNN 92.93+0.02 86.07+085 | 93.90+007 93.494000 95.69+003 | 92.33 | 0.08x
SConcat 92.46+004 | 82414077 | 94224014 94124011 95.78+005 | 91.80 | 0.75x
biLSTM (Eq. 3)
SRNN 94.25+006 | 88.88+061 | 94.14+006 9391011 95.98+010 | 93.49 | 0.06x
grConv 94.43+006 | 89.07+036 | 94.43+009 94.18+009 95.96+004 | 93.66 | 0.06x
SAve 94114020 | 89.02+012 | 93.74+013 93.53+008 95.39+010 | 93.20 | 0.19x
SCNN 94.16+026 | 89.10+o61 | 94.17+006 94.08+010 95.74+008 | 93.45 | 0.08x
SConcat 94.31+007 | 88.69+065 | 94.62+005 94.48+007 96.11+007 | 93.64 | 0.21x
SMinus 93.87+017 | 88.21+027 | 93.62+009 93.55+010 95.05+000 | 92.86 | 0.29x

1) NN-Labeler: The neural network sequence labeling model
performing classification on each input observation.

2) NN-CRF: The neural network CRF that models the con-
ditional probability of a label sequence over the input
sequence.

3) SRNN: The neural semi-CRF model proposed by Kong
et al. [10]. The comparison is based on our re-
implementation.

4) grConv: The neural semi-CRF model proposed by Zhuo
et al. [12]. We only adopt their segment representation
module (i.e., grConv). The comparison is based on our
re-implementation.

BIESO-tag schema is used in all the CRF and sequence
labeling models.!! Both NN-Labeler and NN-CRF take the
same contextualized input representation (Eq. 3) as our neural
semi-CRF models but vary on the output structure and do not
explicitly model segment-level information.

C. Subsequence Encoding

We first study the segment representation by encoding subse-
quence (§IV-A). This includes a comparison of different con-
text representing components and a comparison of different
segment representing components. The experimental results on
chunking, NER, and CWS are shown in Table IV. The first
block contains our sequence labeling and CRF baselines. The
second block contains the results of semi-CRF models using raw
embeddings as input (Eq. 4). The third block contains those
using the biLSTM-encoded vector as input (Eq. 3). Among all
the compared models in Table IV, grConv with biLSTM context

1When comparing our results with those in our previous work [1], we found
the scores of CoONLLO03, CTB6, and PKU are quite close (e.g., the CoNLLO03
scores of NN-Labeler is 88.62 and 88.46 between two versions). However, we
witness higher MSR results both for the baselines and the neural semi-CRF.
This is partially caused by the usage of recurrent dropout and batch training.
The multiple-seeded runs also lead to the difference.

10 tag which means OUTSIDE is not adopted in CWS experiments since
CWS doesn’t involve assigning tags to segments.

encoding achieves the best test performance, and our SConcat
is only 0.02 lower. For each compared task, grConv wins in
chunking, SCNN wins in NER. and SConcat wins in two of the
three CWS dataset,

By comparing NN-CRF with other semi-CRFs in the third
block (these models use the same biLSTM encoded context as
input), we can see that the semi-CRFs work better than the linear-
chain CRFs in most settings except SMinus. The largest margin
between NN-CRF and neural semi-CRF is 0.55 according to
the averaged scores. This shows the necessity of modeling the
segment in segmentation problems.

The comparison between the second and the third blocks
shows that encoding the context is important in neural semi-CRF.
Among the compared tasks, there are larger margins'? between
models with and without context encoding on CoNLLOO and
CoNLLO03, while these margins'* on CWS are smaller. This
observation indicates that chunking and NER are more sensitive
to the contextual information of inputs.

In the comparison among different segment representation
components, SConcat is only 0.02 points lower than the best
grConv baseline. From this comparison, we can also see that
properly modeling the input orders is important to the segmen-
tation performance, since the group of networks that models
orders (SRNN, grConv, and SConcat) generally works better
than the ones that ignore orders (SAve and SMinus).

A further comparison on the inference speed shows that
SConcat runs more than 3 times faster than SRNN and gr-
Conv, but slower than the NN-Labeler and NN-CRF, which
results from the intrinsic difference in time complexity.'*
Considering SConcat’s performance and speed advantage,
we use SConcat as our composition function in the future
experiments.

12The corresponding numbers are 1.36 and 3.03.

13The corresponding numbers are 0.15, 0.22, and —0.40.

4The inference speed is evaluated on a single-threaded Intel(R) Xeon(R)
CPU E5-2682 v4 without sequence-level parallelization, such as batching.

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

820

92.4 4

92.2 4 /

92.0 9 ’

! 91.8 4 4

50.6 4

T
0

T T T T T T
10k 20k 50k 100k 200k 500k
number of incorrect segments.

(a)

T T T T T T
10k 20k 50k 100k 200k 500k
number of incorrect segments.

(b)

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE V
THE EFFECT OF DIFFERENT SEGMENT STRING EMBEDDINGS, INCLUDING
THEIR USE AS FIXED, AND UPDATING THEIR WEIGHTS WITH AND WITHOUT
INITIALIZATION

model [CoNLLO3 | CTB6
from training data
500K update J 51.37+03s | 92.13x0.1
" from unlabeled data
fixed 74.81+041 | 91.86+0.10
update 73.62+051 | 93.65+0.3
update w/o init. 63.54+154 | 92.96-+008
TABLE VI

THE RESULTS OF USING BOTH THE COMPOSITION FUNCTION AND SEGMENT
STRING EMBEDDINGS. THE FIRST ERROR REDUCTION IS CALCULATED
BETWEEN THE MODEL WITH SEGMENT STRING EMBEDDNGS AND NN-CRF.
THE SECOND ERROR REDUCTION IS CALCULATED BETWEEN THE MODEL

Fig. 4. The relation between number of negative segments and the model’s
performances. The left Fig. plots that for CONLLO3 and the right Fig. plots that
for CTB6.

We need to note that also the results in Table IV can be further
improved by the task-specific engineering of the inputs. For ex-
ample, building the NER models from the character based word
representation has been shown to improve the performance [35].
Meanwhile, using the character bigarms as input has also been
proved to be effective for CWS compared to the unigrams we use.
However, since our goal is to compare the various components in
semi-CRFs and compare semi-CRFs with the sequence labeling
models, we use a relatively simple and unified inputs.

D. Segment String Embedding

In this section, we study the effect of representing a segment
with segment string embeddings by using it as the only repre-
sentation.

As discussed in Section IV-B, constructing the embedding
lookup table might play an important role. We first study the con-
struction from training data. We empirically confirm the effect
of including incorrect segments in this section. Experiments are
conducted on CoNLL03 and CTB6. We build the lookup table
on the training data and plot the relation between the number of
incorrect segments and the model’s performances in Fig. 4. From
this figure, more incorrect segments lead to better performances,
which indicates the correlation between the number of incorrect
segments and the final performance. However, the relatively
low performance in Fig. 4 indicates that the construction from
training data is not optimal. How to effectively construct the
lookup table is yet to be answered.

Next, we study the construction from unlabeled data, which
constructs the lookup table from the automatically segmented
unlabeled data. One is the neural semi-CRF (marked as Base-
line) baseline which represents segment by composing input
The CoNLLO3 and CTB6 results of using the lookup table
constructed on the unlabeled data are shown in the row marked
as “update w/o init.” in Table V. It outperforms the models using
500 K incorrect segments in the training data. This shows the
effectiveness of construction from unlabeled data.

WITH AND WITHOUT SEGMENT STRING EMBEDDNGS

model [CoNLLO0 [CoNLLO3 [CTB6 PKU MSR
dev. result
NN-CRF 95.26 92.92 9426 94.55 95.42
biLSTM+SConcat 95.85 93.13 ‘ 9530 95.67 96.00
+fixed segment string embeddings
| 9586 | 9352 | 9605 9683 97.07
+update segment string embeddings
| 9574 | 9377 | 9622 97.03 9745
test result
NN-CRF 93.84 88.83 93.64 9396 95.47
biLSTM+SConcat 94.31 88.69 94.62 9448 96.11
+segment string embedding according to the dev. result
94.39 89.87 95.63 95.67 97.25
+0.09 +0.36 +0.05 +0.11 +0.03
Diversity 27.44 10.77 6.08 4.75 3.64
Err. reduction® 8.88 9.23 31.17 2827 39.36
Err. reduction? 1.30 10.37 18.61 21.50 29.41

With the auto-segmented data, segment string embeddings
are easy to achieve. We use Word2Vec to learn segment string
embeddings from the unlabeled data and use them either as fixed
input or initialization. The results are also shown in Table V.
From this table, adopting these segment embeddings leads to
better performance than those that does not. However, using the
fixed embeddings may be task-related, since the results on the
CoNLLO3 dataset favor the fixed segment string embeddings and
those on CTB6 perform better using updated word embeddings.

E. Combination

Next, we study the problem of combining the segment rep-
resentation from subsequence encoding and segment string em-
beddings. The results are shown in Table VI. From this table,
we see that using segment string embeddings leads to a con-
sistent performance improvement. For the NN-CRF baseline,
the macro-averaged performance gain of using segment string
embeddings is 1.41 and the macro-averaged error reduction is
23.38%, and that for the model without segment string embed-
dings is 0.92 and 16.24%, respectively. This comparison shows
the effectiveness of using segment string embeddings.

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING SEGMENT REPRESENTATIONS FOR NEURAL SEMI-MARKOV CRF 821

X MSR —=- y=-1.00 x + 26.75
25 A
Sa20{ PR
B XCTBB~L _
3 15 S~ao
g S~
S 101 X CONLLO3 ~~~~o_
& Sseo
5 S~eo
04 CoNLTea X
5 10 15 20 25
Diversity score.
Fig. 5. The relation between diversity and error reduction.

TABLE VII
THE DISTRIBUTION OF TWO TYPES OF ERRORS FOR OUR MODEL WITH AND
WITHOUT SEGMENT STRING EMBEDDINGS. THE NUMBERS ARE OBTAINED ON
THE RESULTS OF MULTIPLE RUNS ON CONLLO03

model boundary label

biLSTM+SConcat 354.00 285.60
+segment string embeddings 310.75 269.15

Error reduction 12.25 5.76

From Table VI, we can see that segment string embeddings’
effect is task-related, where using segment string embeddings
does not significantly change the chunking score but achieves
an improvement of more than one point for NER and CWS.
We attribute this observation to the fact that chunking presents
more diverse segments, which made it difficult to recall enough
segments in the segment string embeddings lookup table. We
calculate the segment diversity score of a dataset as

of unique segments

Diversity =
of segments

The diversity score for each dataset is shown in the “Diversity”
row of Table VI. CoNLLOO is shown to be the most diverse
dataset in our experiments according to this number. A fur-
ther study shows the correlation between diversity and error
reduction with a Pearson correlation of —0.91 (see Fig. 5 for an
illustration), and this confirms our assumption.

Since segmentation involves identifying the boundary and as-
signing labels, we categorize the errors into two types: boundary
errors, which characterize the incorrect boundaries and label
errors, which characterize the correct boundary but incorrect la-
bels. We study the effect of segment string embeddings on these
two errors. Table VII shows that the segment string embeddings
correct more boundary errors than label errors. This observation
suggests the possibility to further improve the performance with
a better segment string embedding lookup table construction.

A further study on the ways of using segment string embed-
dings does not reveal significant differences. Chunking favors
fixed segment string embeddings slightly more, while the other
four tasks favor updating the embeddings during model learning.

F. Using Deep Contextualized Embeddings as Input

ELMo is shown to be very effective in a range of NLP tasks.
However, the original study in our previous work predated the
rise of contextualized embeddings and leave the question that

TABLE VIII
THE TEST RESULTS WITH MODEL USING ELMO AS THE INPUT
REPRESENTATION. THE FIRST AND SECOND ERROR REDUCTION HAVE THE
SAME MEANINGS AS THOSE OF TABLE VI

model CoNLLOO | CoNLLO3 | CTB6 PKU MSR
NN-CRF 96.48 91.72 9591 9558 96.74
+0.10 +0.28 +0.05 +0.03 + 0.02
SConcat 96.07 89.31 95.57 9478 95.30
+0.12 +035 +0.07 +0.11 +0.10
biLSTM+SConcat 96.60 91.84 96.11 9539 96.75
+0.06 +0.07 +0.12 +005 +005
+segment string embedding according to dev. results in Table VI
96.58 92.33 96.46 9597 97.85
+0.09 +005 +0.13 +0.08 +0.06
Diversity 27.44 10.77 6.08 4.75 3.64
Err. reduction’ 2.73 7.36 13.23 8.94 33.92
Err. reduction? -0.67 591 8.81 13.12 33.81

whether semi-CREF is still useful unanswered. In this paper, we
also tried to use ELMo as an input representation (Eq. 2).!> For
English, we use the official release of the large English ELMo
trained on the One Billion Word Benchmark [36] from Peters
et al. [13].1° For Chinese, we use the ELMo toolkit released
by Che et al. [37] to obtain character unigram ELMo.!” The
character unigram ELMo is trained on Chinese Gigaword-v5.
The dimension of ELMo is 1,024 which makes it highly over-
parameterized and more prone to overfitting. Thus, we increase
the dropout rate to 0.25 in this part of the experiments.

The experimental results are shown in Table VIII. These
results confirm the trend we witnessed in Table VI, in which
our semi-CRF with SConcat outperforms the neural CRF model
in three out of five datasets, and incorporating segment string
embeddings further increases the model’s performance in four
out of the five datasets. The correlation between segment diver-
sity and error reduction is consistent with that of Fig. 5. The
difference between the model with and without segment string
embeddings is not significant on chunking, which might result
from the diverse segment forms in the CoNLLOO dataset.

The results of additional experiments in which our model
directly uses ELMo as input is shown in the “SConcat” row.
The segmentation performance is improved against those in
Table IV. We attribute this to the fact that ELMo models context
information. However, the score lags that of using biLSTM to
encode context (biLSTM+SConcat), which shows the necessity
of modeling task-specific context.

From Table VIII, the macro-averaged error reduction achieved
by using segment string embeddings against the NN-CRF base-
line is 13.16 and this number is 12.00 against the neural semi-
CRF model without segment string embeddings, yielding a
corresponding macro-averaged performance gains are 0.55 and
0.49, respectively. From this result, the reduction is smaller
compared with that of Table VI. In addition, we can see that the
effect of subsequence encoding and segment string embeddings

SELMo is used as a replacement for ¢ @ $(n® in Eq. 9.
16[Online]. Available: https://allennlp.org/elmo
17[Online]. Available: https://github.com/HIT-SCIR/ELMoForManyLangs/

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

822 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE IX
COMPARISON WITH THE SOTA CHUNKING SYSTEMS. ¢ MARKS THE SYSTEM
THAT USES MULTI-TASK LEARNING.) MARKS THE SYSTEM THAT USES
SEMI-SUPERVISED LEARNING. * MARKS THE RESULT THAT IS NOT DIRECTLY
COMPARABLE DUE TO THE DATA SPLIT DIFFERENCE.) MARKS THE RESULT
THAT 1S OBTAINED FROM THE AVERAGE OF MULTIPLE RUNS

model CoNLLO00
CVT+Multi-task (Large)¥%*© [37] 97.0
Flair embeddings®® [38] 96.72

ours V' 96.58

TagLM*® [39] 96.37
LM-LSTM-CRF*“%¢ [40] 95.96
IMT® [41] 95.77

Low supervision [42] 95.57

Suzuki and Isozaki (2008)% [43] 95.15
grConv (1rep0rted)Q7 [12] 95.10
NCRF++ [44] 95.06

is not fully orthogonal. With the enhanced input representation,
the benefits from using segment string embedding are decreased.
However, the fact that segment embeddings still lead to improve-
ment shows the effectiveness of our method.
Utill this point in our study, we have empirically studied dif-
ferent context representations, different composition functions,
and different segment string embeddings. Therefore, from the
experimental results, the following knowledge about our neural
semi-CRF model is obtained:
® Neural semi-CRFs outperform the linear-chain CRFs in
most of the cases (see Table IV and VIII).

® Encoding context is important, even when the input repre-
sentation carries contextual information (see Table IV and
VIID).

e Using segment string embeddings learned on unlabeled
data helps the tasks where the segment diversity is not too
large (see Table V, VI, and VIII).

G. Comparison With State-of-the-Art Systems

Finally, we compare our neural semi-CRF model with the
SOTA segmentation systems. Table IX shows the chunking
comparison, where our neural semi-CRFs using ELMo as input
outperforms most of the compared systems. It only lags the
SOTA system trained with multi-task learning [38] by 0.44, and
lags the system that uses rich character-level and word-level
contextualized embeddings [39] by 0.14. The comparison with
Akbik et al. [39] again emphasizes the importance of the input
representation. In addition, we need to note that the dependency
parsing training data (Section 2-21 in WSJ) in Clark et al. [38]
overlaps with the test set of CoNLLOO (Section 20 in WSJ).
Chunking and dependency parsing is syntactically correlated;
therefore, their results not very convincing. We also attribute
the gap comparing our model with that of Akbik ez al. [39] to
their learning of contextualized embeddings on both the word
and character level.

Table X shows the NER comparison. The trend is similar to
that of Table IX, in which improving the input representation
[18], [39] and training with multi-task learning [38] helps NER

TABLE X
COMPARISON WITH THE SOTA NER SYSTEMS. &, O, AND) HAVE THE SAME
MEANINGS AS THOSE IN TABLE IX. * MARKS THE RESULT THAT IS NOT
DIRECTLY COMPARABLE DUE TO USING TRAIN AND DEVELOPMENT SPLITS
FOR TRAINING

model CoNLLO03
CNN Large+fine-tune” [45] 93.5
Flair embeddings*©? [38] 93.09
BERT Large® [46] 92.8
CVT+Multi-task (Large)®“¢ [37] 92.6

ours Y 92.33

BiLSTM-CRF+ELMo"v? [13] 92.22
TagLM*“? [39] 91.93

HSCREV? [47] 91.38

NCRF++ [44] 91.35
LM-LSTM-CREV*¢ [40] 91.24
BiLSTM-CRF-CNN [14] 91.21
LSTM-CRF [34] 90.94

grConv (reported)o [12] 90.87

TABLE XI
COMPARISON WITH THE SOTA CWS SYSTEMS. MARKS THE SYSTEM THAT
USES THE CHARACTER UNIGRAM AS INPUT. § MARKS THE SYSTEM THAT USES
THE CHARACTER BIGRAM AS INPUT. O AND () HAVE THE SAME MEANINGS AS
THOSE IN TABLE IX. * MARKS THE RESULT THAT IS NOT DIRECTLY
COMPARABLE DUE TO PREPROCESSING ON DIGITS AND ENGLISH LETTERS
ACCORDING TO PENG AND DREDZE [48]

model || CTB6 PKU MSR

BiLSTM-CRF+hyper-param. search® [49] || 96.7 96.1 98.1

oursT¥9 96.5 96.0 97.9

Transition-based+emb. tuning® [50] || 962 963 97.5

Greedy Search+word contextt [23] 96.2 96.0 97.8

BiLSTM-CRF+adv. loss'¥ [51] 943 96.0

Greedy Search+Span repr.t [52] - 95.8 97.1

Greedy Searcht [19] - 957 96.4

Gated Recursive NN*T¥ [53] || 958 964 976

LSTM*T¥ [54] 949 957 964

Max-margin Tensor NNT¥ [31] - 952 972

CNNT [55] - 924 933

SRNN (reported) [10] - 90.6 90.7

Sparse semi-CRF [7] - 95.2 97.3

Sparse transition-based [56] - 95.1 97.2
Auto-segmented Features” [25] 95.7 - -

considerably. In Table X, our system is 1.17 points lower than
the SOTA results of cloze-driven self-attention network [46].
We attribute this to the fact that cloze-driven self-attention
network was trained on a larger corpus (3,300 M vs 800 M
words for ELMo) and carefully tailored language modeling
scheme. However, our model outperforms the system that care-
fully engineers the usage of ELMo in biLSTM-CRF [13], [40],
which shows the effectiveness of modeling the composition and
representing the segment with embeddings in the segmentation
problem.

Table XI shows the comparison with the SOTA CWS systems.
From this table, we can see that using the character bigrams as
input is key to SOTA performance in previous CWS works. Our
neural semi-CRF model achieves competitive performance with

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING SEGMENT REPRESENTATIONS FOR NEURAL SEMI-MARKOV CRF 823

these systems by only using the character unigrams as input.
On CTB6, our model’s performance is only 0.24 lower than the
SOTA biLSTM-CREF system with the careful hyperparameter
search [49]. On PKU, the gap is 0.33 and 0.25 for MSR. We
need to note that all the works in Table XI report a single score
and this practice can be problematic according to Reimers and
Gurevych [15]. Our results were obtained from the average of
multiple runs which is more reliable.

The overall gap between the results of our model and the
aggregation of the results of the SOTA segmentation systems
is 0.43. Our model can be concluded as competitive to the
SOTA system according to this comparison, which once again
shows the effectiveness of representing the segment with neural
semi-CRFs both by encoding subsequence and embedding the
segment string.

VI. RELATED WORK

Semi-CRFs have been successfully used in many NLP tasks
such as information extraction [9], named entity recognition [3],
opinion extraction [4], disfluency detection [5], and Chinese
word segmentation [6], [7]. There are also plenty applications
of semi-CRFs to the other areas, such as speech [57]-[59].
However, most of the NLP works use sparse features as input.
Its combination with a neural network representation module
is relatively less studied. We based our work on the neural
semi-CRF work of Kong et al. [10] and Zhuo et al. [12], and
dervised a considerable amount of meaningful extensions. In
addition, a thorough study on the model structure revealed the
important component in neural semi-CRFs.

Sequence labeling is a widely used proxy for segmentation.
High accuracy of segmentation is achieved by improving the
input representation [13], [18], [39]-[41], and using a relatively
simple structure prediction model such as classification. We
observed boosted performance with semi-CRFs that directly
models the segment using the powerful embeddings from ELMo
as input. This suggests that modeling structure is still beneficial
even in the condition of pushing the input representation to the
extreme.

Using auto-segmented data to enhance Chinese word seg-
mentation has been studied in Wang et al. [26]. However, only
statistical features that are counted on the auto-segmented data
were introduced to help to determine segment boundary and the
entire segment was not considered in their work. Our model
takes the advantage of the word embedding technique [17] and
explicitly represents the entire segment.

In this paper, we apply our model to three segmentation
problems, including chunking, NER, and CWS. Many other
NLP problems can be modeled as segmentation such as disflu-
ency detection [5], information extraction, and slot filling [60]
in spoken language understanding. It would be interesting to
evaluate the application of our neural semi-CRF model on these
problems.

VII. CONCLUSION

In this paper, we thoroughly study the problem of representing
a segment in neural semi-CRF model. We empirically test the
importance of context representation in neural semi-CRFs. We
propose a concatenation alternative for segment representation

that achieves an equivalent accuracy to SRNN and grConv but
runs faster. We also propose an effective way of incorporating
segment string embeddings as the segment representation and
find that it significantly improves the performance. Experiments
on chunking, NER, and CWS show that the neural semi-CRFs
benefits from the rich segment representation and achieves com-
petitive performance with the state-of-the-art systems.

REFERENCES

[1]1 Y. Liu, W. Che, J. Guo, B. Qin, and T. Liu, “Exploring segment repre-
sentations for neural segmentation models,” 2016, [Online]. Available:
http://arxiv.org/abs/1604.05499

[2] F.ShaandF. Pereira, “Shallow parsing with conditional random fields,” in
Proc. Human Lang. Technol. Conf. North Amer. Chapter Assoc. Comput.
Linguist., 2003, pp. 213-220. [Online]. Available: https://www.aclweb.
org/anthology/N03-1028

[3] D. Okanohara, Y. Miyao, Y. Tsuruoka, and J. Tsujii, “Improving the
scalability of semi-Markov conditional random fields for named entity
recognition,” in Proc. 21st Int. Conf. Computat. Linguist. 44th Annu.
Meeting Assoc. Computat. Linguist., Jul. 20006, pp. 465-472.

[4] B.Yangand C. Cardie, “Extracting opinion expressions with semi-Markov
conditional random fields,” in Proc. Joint Conf. Empir. Methods Natu-
ral Lang. Process. Comput. Natural Lang. Learn., Jeju Island, Korea,
Jul. 2012, pp. 1335-1345.

[5] J. Ferguson, G. Durrett, and D. Klein, “Disfluency detection with a semi-
Markov model and prosodic features,” in Proc. Annu. Conf. North Amer.
Chapter Assoc. Comput. Linguist., 2015, pp. 257-262. [Online]. Available:
http://www.aclweb.org/anthology/N15-1029

[6] G. Andrew, “A hybrid Markov/semi-Markov conditional random field for
sequence segmentation,” in Proc. Empir. Methods Natural Lang. Process.,
2006, pp. 465-472.

[71 X. Sun, Y. Zhang, T. Matsuzaki, Y. Tsuruoka, and J. Tsujii, “A dis-
criminative latent variable Chinese segmenter with hybrid word/character
information,” in Proc. Human Lang. Technol.: Annu. Conf. North Amer.
Chapter Assoc. Comput. Linguist., Jun. 2009, pp. 56—64.

[8] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in Proc. 18th Int. Conf. Mach. Learn., Jun. 2001, pp. 282-289.

[9] S. Sarawagi and W. W. Cohen, “Semi-Markov conditional random fields

for information extraction,” Adv. Neural Inf. Process. Syst., vol. 17, 2004,

pp. 1185-1192.

L.Kong, C. Dyer, and N. A. Smith, “Segmental recurrent neural networks,”

in Proc. 4th Int. Conf. Learn. Repr., May 2016.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

J. Zhuo, Y. Cao, J. Zhu, B. Zhang, and Z. Nie, “Segment-level sequence

modeling using gated recursive semi-Markov conditional random fields,”

in Proc. 54th Annu. Meeting Assoc. Comput. Linguist., 2016, pp. 1413—

1423.

M. Peters et al., “Deep contextualized word representations,” in Proc. Conf.

North Amer. Chapter Assoc. Comput. Linguist.: Human Lang. Technol.,

Jun. 2018, pp. 2227-2237.

X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional

LSTM-CNNs-CRFE,” in Proc. 54th Annu. Meeting Assoc. Comput. Lin-

guist, 2016, pp. 1064-1074.

N. Reimers and I. Gurevych, “Reporting score distributions makes a

difference: Performance study of LSTM-networks for sequence tagging,”

in Proc. Empir. Methods Natural Lang. Process., 2017, pp. 338-348.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word

vectors with subword information,” Trans. Assoc. Comput. Linguist., vol.

5, no. 1, pp. 135-146, 2017.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in Proc.

26th Int. Conf. Neural Inf. Process. Syst., Dec.2013,vol. 2, pp.3111-3119.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training

of deep bidirectional transformers for language understanding,” in Proc.

Conf. North Amer. Chapter Assoc. Comput. Linguist.: Human Lang. Tech-

nol., Jun. 2019, pp. 4171-4186.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural

network for modelling sentences,” in Proc. 52th Annu. Meeting Assoc.

Comput. Linguist., 2014, pp. 655-665. [Online]. Available: http:/www.

aclweb.org/anthology/P14-1062

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1604.05499
https://www.aclweb.org/anthology/N03-1028
http://www.aclweb.org/anthology/N15-1029
http://www.aclweb.org/anthology/P14-1062

824

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

D. Cai and H. Zhao, “Neural word segmentation learning for chinese,” in
Proc. 54th Annu. Meeting Assoc. Comput. Linguist., 2016, pp. 409-420.
[Online]. Available: http://www.aclweb.org/anthology/P16-1039

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12, pp. 2493-2537, Nov. 2011.

W. Wang and B. Chang, “Graph-based dependency parsing with bidi-
rectional LSTM,” in Proc. 54th Annu. Meeting Assoc. Comput. Lin-
guist., 2016, pp. 2306-2315. [Online]. Available: http://www.aclweb.org/
anthology/P16-1218

J. Cross and L. Huang, “Span-based constituency parsing with a structure-
label system and provably optimal dynamic oracles,” in Proc. Empir.
Methods Natural Lang. Process., 2016, pp. 1-11. [Online]. Available:
https://aclweb.org/anthology/D16-1001

H.Zhou,Z. Yu, Y. Zhang, S. Huang, X.-Y. Dai, and J. Chen, “Word-context
character embeddings for chinese word segmentation,” in Proc. Empir.
Methods Natural Lang. Process., 2017, pp. 760-766. [Online]. Available:
https://www.aclweb.org/anthology/D17-1079

W. Chen, J. Kazama, K. Uchimoto, and K. Torisawa, “Improving
dependency parsing with subtrees from auto-parsed data,” in Proc.
Conf. Empir. Methods Natural Lang. Process., Aug. 2009, pp. 570-
579.

Y. Wang, J. Kazama, Y. Tsuruoka, W. Chen, Y. Zhang, and K. Torisawa,
“Improving Chinese word segmentation and POS tagging with semi-
supervised methods using large auto-analyzed data,” in Proc. 5th Int. Joint
Conf. Natural Lang. Process., Nov. 2011, pp. 309-317.

C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith,
“Transition-based dependency parsing with stack long short-term mem-
ory,” in Proc. 53th Annu. Meeting Assoc. Comput. Linguist., 2015,
pp. 334-343.

Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” in Proc. 30th Int. Conf. Neu-
ral Inform. Process. Syst., Barcelona, Spain, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3157096.3157211

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

E. F. T. K. Sang and S. Buchholz, “Introduction to the conll-2000 shared
task: Chunking,” in Proc. Conf. Comput. Natural Lang. Learn., 2000.
[Online]. Available: https://doi.org/10.3115/1117601.1117631

E. E T. K. Sang and F. De Meulder, “Introduction to the coNLL-
2003 shared task: Language-independent named entity recognition,”
in Proc. Seventh Conf. Natural Lang. Learn. HLT-NAACL, 2003,
pp. 142-147.

W. Pei, T. Ge, and B. Chang, “Max-margin tensor neural network for
Chinese word segmentation,” in Proc. 52nd Annu. Meeting Assoc. Comput.
Linguist., Jun. 2014, pp. 293-303.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word
representation,” in Proc. Conf. Empir. Methods Natural Lang. Process.,
Oct. 2014, pp. 1532-1543.

W. Ling, C. Dyer, A. W. Black, and I. Trancoso, “Two/too simple adap-
tations of word2vec for syntax problems,” in Proc. Conf. North Amer.
Chapter Assoc. Comput. Linguist.: Human Lang. Technol., May/Jun. 2015,
pp. 1299-1304.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C.
Dyer, “Neural architectures for named entity recognition,” in Proc. Conf.
North Amer. Chapter Assoc. Comput. Linguist.: Human Lang. Technol.,
Jun. 2016, pp. 260-270.

C. Chelba et al., “One billion word benchmark for measuring progress
in statistical language modeling,” in Proc. Interspeech 15th Annu. Conf.
Int. Speech Commun. Assoc., Singapore, Sep. 2014. [Online]. Available:
http://www.isca-speech.org/archive/interspeech_2014/i14_2635.html

W. Che, Y. Liu, Y. Wang, B. Zheng, and T. Liu, “Towards better UD
parsing: Deep contextualized word embeddings, ensemble, and treebank
concatenation,” in Proc. CoNLL 2018 Shared Task: Multilingual Parsing
Raw Text Universal Dependencies, 2018, pp. 55-64. [Online]. Available:
http://www.aclweb.org/anthology/K18-2005

K. Clark, M.-T. Luong, C. D. Manning, and Q. Le, “Semi-supervised
sequence modeling with cross-view training,” in Proc. Empir. Methods
Natural Lang. Process., 2018, pp. 1914—1925. [Online]. Available: http:
//www.aclweb.org/anthology/D18-1217

A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings
for sequence labeling,” in Proc. Coling, 2018, pp. 1638—1649. [Online].
Available: http://www.aclweb.org/anthology/C18-1139

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

M. Peters, W. Ammar, C. Bhagavatula, and R. Power, “Semi-supervised
sequence tagging with bidirectional language models,” in Proc. 55th
Annu. Meeting Assoc. Comput. Linguist., 2017, pp. 1756-1765. [Online].
Available: http://aclweb.org/anthology/P17-1161

L.Liu et al., “Empower sequence labeling with task-aware neural language
model,” in Proc. Assoc. Adv. Artif. Intell., 2018.

K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher, “A joint many-
task model: Growing a neural network for multiple NLP tasks,” in Proc.
Empir. Methods Natural Lang. Process., 2017, pp. 1923—-1933. [Online].
Available: https://www.aclweb.org/anthology/D17-1206

A.S¢gaard and Y. Goldberg, “Deep multi-task learning with low level tasks
supervised at lower layers,” in Proc. 54th Annu. Meeting Assoc. Com-
put. Linguist., 2016, pp. 231-235. [Online]. Available: http://anthology.
aclweb.org/P16-2038

J. Suzuki and H. Isozaki, “Semi-supervised sequential labeling and seg-
mentation using giga-word scale unlabeled data,” in Proc. ACL-08: HLT,
Columbus, Ohio, USA, Jun. 2008, pp. 665-673,.

J. Yang and Y. Zhang, “Ncrf++: An open-source neural sequence labeling
toolkit,” in Proc. 56th Annu. Meeting Assoc. Comput. Linguist., 2018, pp.
74-79. [Online]. Available: http://www.aclweb.org/anthology/P18-4013
A. Baevski, S. Edunov, Y. Liu, L. Zettlemoyer, and M. Auli, “Cloze-
driven pretraining of self-attention networks,” 2019. [Online]. Available:
http://arxiv.org/abs/1903.07785

Z. Ye and Z.-H. Ling, “Hybrid semi-markov CRF for neural sequence
labeling,” in Proc. 56th Annu. Meeting Assoc. Comput. Linguist., 2018,
pp- 235-240. [Online]. Available: http://www.aclweb.org/anthology/P18-
2038

N. Peng and M. Dredze, “Improving named entity recognition for chinese
social media with word segmentation representation learning,” in Proc.
54th Annu. Meeting Assoc. Comput. Linguist., 2016, pp. 149-155. [On-
line]. Available: http://anthology.aclweb.org/P16-2025

J. Ma, K. Ganchev, and D. Weiss, “State-of-the-art Chinese word seg-
mentation with Bi-LSTMs,” in Proc. Empir. Methods Natural Lang. Pro-
cess., 2018, pp. 4902—4908. [Online]. Available: http://www.aclweb.org/
anthology/D18-1529

J. Yang, Y. Zhang, and F. Dong, “Neural word segmentation with rich
pretraining,” in Proc. 55th Annu. Meeting Assoc. Comput. Linguist., 2017,
pp. 839-849. [Online]. Available: http://aclweb.org/anthology/P17-1078
X. Chen, Z. Shi, X. Qiu, and X. Huang, “Adversarial multi-criteria
learning for Chinese word segmentation,” in Proc. 55th Annu. Meeting
Assoc. Comput. Linguist., 2017, pp. 1193-1203. [Online]. Available:
http://aclweb.org/anthology/P17-1110

D. Cai, H. Zhao, Z. Zhang, Y. Xin, Y. Wu, and F. Huang, “Fast and accurate
neural word segmentation for chinese,” in Proc. 55th Annu. Meeting Assoc.
Comput. Linguist., 2017, pp. 608—615. [Online]. Available: http://aclweb.
org/anthology/P17-2096

X. Chen, X. Qiu, C. Zhu, and X. Huang, “Gated recursive neural net-
work for chinese word segmentation,” in Proc. 53th Annu. Meeting
Assoc. Comput. Linguist., 2015, pp. 1744-1753. [Online]. Available:
http://www.aclweb.org/anthology/P15-1168

X. Chen, X. Qiu, C. Zhu, P. Liu, and X. Huang, “Long short-term memory
neural networks for Chinese word segmentation,” in Proc. Empirical Meth-
ods Natural Lang. Process., 2015, pp. 1197-1206. [Online]. Available:
http://aclweb.org/anthology/D15-1141

X. Zheng, H. Chen, and T. Xu, “Deep learning for Chinese word segmen-
tation and POS tagging,” in Proc. Conf. Empir. Methods Natural Lang.
Process., Oct. 2013, pp. 647-657.

Y. Zhang and S. Clark, “Chinese segmentation with a word-based percep-
tron algorithm,” in Proc. 45th Annu. Meeting Assoc. Comput. Linguist.,
Jun. 2007, pp. 840-847.

G. Zweig and P. Nguyen, “A segmental CRF approach to large vocabulary
continuous speech recognition,” in Proc. IEEE Workshop Autom. Speech
Recognit. Understanding, Merano, 2009, pp. 152-157.

Y. He and E. Fosler-Lussier, “Efficient segmental conditional ran-
dom fields for one-pass phone recognition,” in Proc. Interspeech, 13th
Annu. Conf. Int. Speech Commun. Assoc., Portland, Oregon, USA,
Sep. 2012, pp. 1898-1901.

H. Tang et al., “End-to-end neural segmental models for speech recogni-
tion,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 8, pp. 1254-1264,
Dec. 2017.

G. Mesnil et al., “Using recurrent neural networks for slot filling in
spoken language understanding,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 23, no. 3, pp. 530-539, Mar. 2015.

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2020 at 07:35:19 UTC from IEEE Xplore. Restrictions apply.

http://www.aclweb.org/anthology/P16-1039
http://www.aclweb.org/anthology/P16-1218
https://aclweb.org/anthology/D16-1001
https://www.aclweb.org/anthology/D17-1079
http://dl.acm.org/citation.cfm{?}id$=$3157096.3157211
https://doi.org/10.3115/1117601.1117631
http://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
http://www.aclweb.org/anthology/K18-2005
http://www.aclweb.org/anthology/D18-1217
http://www.aclweb.org/anthology/C18-1139
http://aclweb.org/anthology/P17-1161
https://www.aclweb.org/anthology/D17-1206
http://anthology.aclweb.org/P16-2038
http://www.aclweb.org/anthology/P18-4013
http://arxiv.org/abs/1903.07785
http://www.aclweb.org/anthology/P18-2038
http://anthology.aclweb.org/P16-2025
http://www.aclweb.org/anthology/D18-1529
http://aclweb.org/anthology/P17-1078
http://aclweb.org/anthology/P17-1110
http://aclweb.org/anthology/P17-2096
http://www.aclweb.org/anthology/P15-1168
http://aclweb.org/anthology/D15-1141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

