
9

Deep Contextualized Word Embeddings for Universal
Dependency Parsing

YIJIA LIU, WANXIANG CHE, YUXUAN WANG, BO ZHENG, BING QIN, and TING LIU,

Harbin Institute of Technology, China

Deep contextualized word embeddings (Embeddings from Language Model, short for ELMo), as an emerging

and effective replacement for the static word embeddings, have achieved success on a bunch of syntactic and

semantic NLP problems. However, little is known about what is responsible for the improvements. In this

article, we focus on the effect of ELMo for a typical syntax problem—universal POS tagging and dependency

parsing. We incorporate ELMo as additional word embeddings into the state-of-the-art POS tagger and de-

pendency parser, and it leads to consistent performance improvements. Experimental results show the model

using ELMo outperforms the state-of-the-art baseline by an average of 0.91 for POS tagging and 1.11 for

dependency parsing. Further analysis reveals that the improvements mainly result from the ELMo’s better

abstraction ability on the out-of-vocabulary (OOV) words, and the character-level word representation in

ELMo contributes a lot to the abstraction. Based on ELMo’s advantage on OOV, experiments that simulate

low-resource settings are conducted and the results show that deep contextualized word embeddings are

effective for data-insufficient tasks where the OOV problem is severe.

CCS Concepts: • Computing methodologies → Artificial intelligence; Natural language processing;

Phonology / morphology;

Additional Key Words and Phrases: Natural language processing, deep contextualized word embeddings,

universal dependency parsing, POS tagging, out-of-vocabulary words, visualization

ACM Reference format:

Yijia Liu, Wanxiang Che, Yuxuan Wang, Bo Zheng, Bing Qin, and Ting Liu. 2019. Deep Contextualized Word

Embeddings for Universal Dependency Parsing.ACM Trans. Asian Low-Resour. Lang. Inf. Process. 19, 1, Article

9 (July 2019), 17 pages.

https://doi.org/10.1145/3326497

1 INTRODUCTION

Effectively learning from raw text has long been the goal of natural language processing (NLP).
Deep contextualizedword embeddings [35, ELMo], which use a bidirectional long short termmem-
ory [16, LSTM] language model to learn contextual information from the raw text, have been
shown as a simple yet effective method to improve several NLP tasks, like question answering,

Fund Project: This work was supported by the Natural Science Foundation of China (NSFC) via grants no. 61632011, no.

61772156, and no. 61772153.

Authors’ address: Y. Liu, W. Che (corresponding author), Y. Wang, B. Zheng, B. Qin, and T. Liu, Harbin Institute of Tech-

nology, No. 2 YiKuang Street, Technique and Innovation Building, HIT Science Park, Harbin, HeiLongJiang 150001, China;

emails: {yjliu, car, yxwang, bzheng, qinb, tliu}@ir.hit.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2375-4699/2019/07-ART9 $15.00

https://doi.org/10.1145/3326497

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

https://doi.org/10.1145/3326497
mailto:permissions@acm.org
https://doi.org/10.1145/3326497

9:2 Y. Liu et al.

textual entailment, semantic role labeling [35], coreference resolution [22], and constituency pars-
ing [20], thus draws a lot of research attention in the NLP community [36].

Although achieving good performance, little is known about what is responsible for the im-
provements, especially for syntactic problems. To track the source of improvements, an ideal test-
bed should consist of various datasets for a certain problem. By comparing ELMo’s effects on
different datasets, the relation between the improvements and the intrinsic characteristics of a
dataset can be revealed, which in turn helps us better understand ELMo. In this article, we choose
universal dependencies [33, short for UD] as the test-bed, since it provides a cross-linguistically
consistent grammatical annotation guideline and more than 100 dependency treebanks for over
60 languages in the world. Answering whether deep contextualized word embeddings improve the

universal dependency parsing performance and exploring what is responsible for such improvements

on these treebanks can teach us with the insight for using ELMo on the syntactic tasks.
In this article, we study the effect of ELMo on UD part-of-speech (POS) tagging and parsing. We

base our POS tagger and dependency parser on the state-of-the-art algorithm of Dozat et al. [12]
and use ELMo as an additional word embedding to improve the algorithm. Experimental results
on the 57 treebanks from the CoNLL 2018 shared task—Universal Dependencies parsing [41] show
that using ELMo leads to consistent improvements and outperforms the state-of-the-art baseline
without ELMo. The averaged improvement for POS tagging is 0.91 accuracy and the improvement
for dependency parsing 1.11 LAS.
After obtaining the improved UD parsing results, we further analyze the reasons. Five attributes

of the treebank along with their correlations to the performance gains are examined and this anal-
ysis reveals that the ELMo improves parsing by mainly improving the out-of-vocabulary (OOV)
word performance. Further ablation on the ELMo model shows that ELMo can abstract an unseen
OOVword as well as the one recalled during ELMo learning, and ELMo’s character-level word rep-
resentation contributes a lot to this abstraction. A visualization further confirms this by clustering
OOV words of the same POS together in the embedding space.
Based on such analysis, we seek ELMo’s ability to solve the syntactic problems in low-resource

settings by simulating experiments. These results show that the model using ELMo requires fewer
labeled data to achieve high-quality parsing, and this indicates that ELMo is a promising technique
for NLP tasks whose data are insufficient.
Major contributions of this work include the following:

—We achieve improved UD parsing performance on an extensive set of data with ELMo and
these results outperform the state-of-the-art baseline, which testifies to the effect of ELMo
on UD parsing.

—We conduct a thorough analysis of the results and show the major source of improvements
as better OOV performance. The improved OOV is mainly led by ELMo’s word abstraction
ability to which the character-level word representation in ELMo contributes a lot.

—Based on the analysis, we conduct low-resource simulation experiments and the results
show that ELMo helps to achieve high-quality parsing with fewer labeled data.

2 RELATEDWORK

Dependency Parsing. Dependency parsing is a fundamental NLP problem,which analyzes the gram-
matical structure of a sentence and establishes relationships between “head” words and their mod-
ifying words. The formalism and dataset for dependency parsing have evolved from the language
and genre dependent dataset of Penn Treebank [27] into a universal syntax formalism covering
hundreds of treebanks [33]. The treebanks of the UD project are annotated using a set of universal

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:3

Fig. 1. Examples of UD trees. The sentences in left and right figures are a translation to each other and they

share a similar syntactic structure.

POS tags and dependency relations but differ in languages and genres (see Figure 1 for an example).
This provides many structural and linguistic challenges for the parser.
In past decades, several data-driven dependency parsing algorithms have been proposed, in-

cluding (1) the graph-based algorithms [30] which find the maximum spanning tree based on the
scoring functions defined on the sub-tree structures, and (2) the transition-based algorithms [14,
32, 43] which model the generation of dependency tree using a probabilistic finite-state machine.
With the success of applying neural networks to NLP problems, the current state-of-the-art parser
[11, 12] simplified the decoding algorithm into a head word classification. The quality of context
representation plays an important role in this algorithm and Dozat andManning [11] use a stacked
long-short-term memory (LSTM) to model the context.

Semi-Supervised Learning. Effectively using the unlabeled data has long been a promising re-
search direction for semi-supervised dependency parser. Chen et al. [6] derived features from auto-
matically parsed unlabeled data to improve graph-based parser’s performance before the resurge
of deep neural models, and their method was further developed by Chen et al. [7]. Liang et al. [24]
also studied the problem of using a complex structure model’s output to train a simple classifier on
the unlabeled data. The application of word embedding in NLP problems can also be considered
as a success in making use of the unlabeled data since the embeddings are pretrained on the large-
scaled unlabeled data [31, 34]. The deep contextualized word embeddings [1, 10, 28, 35] stepped
further in this research direction by deriving context-aware embeddings and improving multiple
NLP tasks.
Our work follows previous semi-supervised work and for the first time applies ELMo to cross-

lingual syntactic analysis on a wide range of languages. Consistent improvements in the experi-
mental results confirm that ELMo is an effective way of using unlabeled data.

Disseting Contextualized Word Embeddings. With the success of deep contextualized word em-
beddings, the research community becomes more and more interested in understanding its effect.
Peters et al. [36] studied the alternatives of LSTM for modeling the context in bidirectional lan-
guage modeling and they found that the alternative architectures like gated CNN [9] and Trans-
former [40] are also effective to learn high-quality contextual vectors. Bowman et al. [5] studied the
effect of contextualizedword embeddings in the perspective of themulti-task learning problem and
made a thorough study of the tasks beyond languagemodeling. They found that among the studied
tasks, language modeling is still a good choice. Zhang and Bowman [42] further confirmed this by
showing the superiority of language modeling over translation in syntactic problems. Similar con-
clusions on the syntactic representations of language modeling were drawn by Tenney et al. [39].
Compared with the work which focuses more on sentence modeling, our work pays more atten-

tion to words and fills the landscape of understanding contextual vectors by studying their effect
on universal dependency parsing. Our work suggests that the ability to abstract OOV word from
ELMo is the key factor for ELMo’s success on syntactic problems.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

9:4 Y. Liu et al.

Fig. 2. The framework for deep biaffine tagger. In this article, we use ELMo as an additional word input, as

highlighted in the cyan block.

3 DEEP BIAFFINE TAGGER AND PARSER

We based our system on the tagger and parser of Dozat andManning [11] and Dozat et al. [12]. The
core idea of the tagger and parser is using an LSTM network to produce the vector representation
for each word and then predict POS tags and dependency relations using the representation.

Deep Biaffine Tagger. For the tagger whose input is the word alone, this representation is calcu-
lated as

hi = BiLSTM(v(word)
1 , . . . , v

(word)
n)i ,

where v
(word)
i is the word representation. After getting hi , the scores of tags are calculated as

h
(pos)
i = MLP(pos) (hi),

s
(pos)
i =W · h(pos)

i + b(pos),

y
(pos)
i = argmax

j
s
(pos)
i, j ,

where each element in s
(pos)
i represents the possibility that the ith word is assigned with the cor-

responding tag (see Figure 2).

Deep Biaffine Parser. For the parser whose inputs are the word and POS tag, the vector repre-
sentation of each word hi is calculated as

xi = v
(word)
i ⊕ v

(taд)
i , (1)

hi = BiLSTM(x1, . . . , xn)i , (2)

where ⊕ denotes concatenation. A pair of representations is fed into a biaffine classifier to predict
the possibility that there is a dependency arc between these two words. The scores over head
words are calculated as

s
(arc)
i = H (arc-head)W (arc)h

(arc-dep)
i + H (arc-head)b(arc),

y (arc) = argmax
j

s (arc)i, j ,

where h
(arc-dep)
i is computed by feeding hi into a multi-layer perceptron network (MLP) and

H (arc-head) is the stack of h
(arc-head)
i which is calculated in the same way as h

(arc-dep)
i but us-

ing another MLP. After getting the head y (arc) word, its relation with the ith word is decided by

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:5

Fig. 3. The framework for deep biaffine parser. We demonstrate how to calculate the arc score (s
(arc)
4,7) and

relation score (s
(r el)
4,7) between the fourth and seventh words. Like in Figure 2, we highlight the additional

ELMo embeddings in the cyan block.

calculating

s
(r el)
i =

(
h
(r el−head)
y (arc)

)T
U(r el)h

(r el−dep)
i +W (r el)

(
h
(r el−dep)
i ⊕ h

(r el−head)
y (arc)

)
+ b(r el),

y (r el) = argmax
j

s (r el)i, j ,

where h(r el−head) and h(r el−dep) are calculated in the same way as h
(arc-dep)
i and h

(arc-head)
i . The

overall framework for the deep biaffine parser is shown in Figure 3.
This decoding process can lead to cycles in the result. Dozat et al. [12] employed an iterative

fixing method on the cycles. We encourage the reader of this article to refer to their paper for more
details on training and decoding.

Word Representation. For both the biaffine tagger and parser, Dozat et al. [12] obtained the word

representation v
(word)
i by summing a tunable embedding wi , a fixed word2vec embedding pi , and

an LSTM-encoded character representation v̂i as

v
(word)
i = wi + pi + v̂i . (3)

According to Dozat et al. [12], the tunable embedding wi captures the representation of holis-
tic words, the fixed embedding pi transfers the knowledge derived from unlabeled data, and the
LSTM-encoded character representation v̂i further helps to represent the words of languages with
rich morphology. The practice of summing multiple features can be treated as a variant of Residual
Network [15].

In addition to summation, another widely adopted method for combining multiple features is
concatenation. The DenseNet [18] developed the feature concatenation idea in the area of image
classification. In previous dependency parsing work [11, 25], both concatenation and summation
achieve the state-of-the-art performance.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

9:6 Y. Liu et al.

4 DEEP CONTEXTUALIZEDWORD EMBEDDINGS

Deep contextualized word embeddings [10, 35] have shown to be very effective on a range of
syntactic and semantic tasks. Peters et al. [35] proposed to derive the contextual representations by
first training a bidirectional language model on the large-scale corpus; then, using the internal layer
activations as the representation for the downstream task. Given a sentence (w1, . . . ,wn) and its
context-independent word representations (ṽ1, . . . , ṽn), the forward language model probability
is formalized as

p (wi | w1, . . . ,wi−1) =
1

Z
exp
(
Wwi

−→
h i−1 + bwi

)
,

where
−→
h i is the last output of the forward context representation function

−−−−→
LSTM(ṽ1, . . . , ṽi) and

Z =
∑
w exp(Ww

−→
h i−1 + bw) is the normalization term. The same definition is used for backward

language modeling.
Peters et al. [35] used a character-level CNN for the context-independent representation where

ṽi = CNN(wi). By using a character-level CNN to represent words, ELMo can output reasonable
context-independent word embeddings for arbitrary words, thus has the ability to overcome the
OOV word problem. This ability significantly helps UD parsing as we can see in the following
section. Peters et al. [35] also used multi-layer LSTMs with skip connections [15] to parameterize−−−−→
LSTM and

←−−−−
LSTM. The multi-layer mechanism can be iteratively described as

−→
h
(k)
i =

−−−−→
LSTM(k)

(−→
h
(k−1)
1 , . . . ,

−→
h
(k−1)
i

)
.

Here,
−→
h
(0)
i = ṽi and

←−
h
(0)
i = ṽi . The final contextualized embeddings are computed by weighted

pooling of the activations of L + 1 different layers as ELMoi = γ
∑L

k=0 sk · (
−→
h
(k)
i ⊕

←−
h
(k)
i). In Peters

et al. [35], L equals two.
To learn the parameters, Peters et al. [35] proposed to train themodel to predict the next words in

the large unlabeled corpus. The learning objective is a summation of each word’s log probabilities
of two directions as

∑n
i=1 (logp (wi | w1, . . . ,wi−1) + logp (wi | wi+1, . . . ,wn)) .

Using ELMo in Deep Biaffine Parser. The goal of this article is to study ELMo’s effect on UD
parsing and we use it as an additional word representation in the deep biaffine parser.
Peters et al. [37] studied the problem of whether tuning the pretrained contextualized embed-

dings in various tasks and suggested freezing ELMo when using it in the model with rich task-
specific parameters. Since our tagging and parsing models are rich in the task-specific parameters
(including the BiLSTM, MLP, and the biaffine classifier in Figure 3), we follow their suggestion and
compute ELMoi without tuning its parameters during tagger and parser training.
After getting ELMoi , we add it as an additional word embedding. As discussed in Section 3,

Dozat et al. [12] summed up different features to form the word representation (Equation (3)).
We follow their work and treat ELMo as another word representation, thus project it to the same

dimension as v
(word)
i and add it into the three existing word features. The calculation of v

(word)
i

becomes

v
(word)
i = wi + pi + v̂i +W

(ELMo) · ELMoi (4)

for both the tagger and parser (see the cyan part in Figure 2 and Figure 3 for an illustration).

We need to note that training the tagger and parser includes tuningW (ELMo) in this setting. To

avoid overfitting, we impose a dropout function on the projected vectorW (ELMo) · ELMoi during
training.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:7

Peters et al. [35] proposed to either concatenate ELMowith the task-specificword representation
(xi in Equation (1) in our case) or with the task-specific context-dependent representation (hi in
Equation (2) in our case). A slight improvement was observed with more sophisticated usage of
ELMo according to their experimental results. However, with the goal of studying ELMo’s effect
on UD parsing rather than exhausted architecture search for further mediocre improvements, we
just use ELMo as an additional word embedding in Dozat et al. [12]’s parser for simplification.

5 EXPERIMENTS

5.1 Settings

We conduct experiments on 57 treebanks across 42 languages released in the CoNLL 2018 universal
dependency parsing shared task [41]. We choose the treebanks of the corresponding languages
because their unlabeled data were released in the shared task. For all the treebanks, we adopt the
standard training/dev/test splits. For the unlabeled data, we randomly sample a set of 20 million
words from the raw text and use the sampled data to train our ELMo.1

Our experiments include both the POS tagging and UD parsing. For the POS tagging experi-
ments, we use the gold tokenized words as input. In the shared-task data, both universal POS tags
(UPOS) and treebank-specific POS tags (XPOS) are provided. We follow Dozat et al. [12] and train
the POS tagger to predict UPOS and XPOS via a multi-task learning objective. We only report the
UPOS results because the XPOS of some dataset is meaningless.2 In addition, our experimental
results showed similar trends for the UPOS and XPOS.
For the UD parsing experiments, we use both the gold tokenized words and the automatically

assigned POS tags as input. The automatic POS tags are obtained by five-way jackknifing using our
ELMo enhanced POS tagger. Labeled attachment score (LAS) is used to evaluate the UD parsing
performance.
For training the ELMo, we use the sample softmax technique to make training on large vocab-

ulary feasible [19]. The major difference between our training method and the standard sample

softmax is that we use a window of 8,192 words surrounding the target word as negative samples
and it shows better performance in our preliminary experiments. The training of ELMo on one
language takes roughly 3 days on an NVIDIA P100 GPU. For training the tagger and parser, we
use the same hyper-parameter settings as Dozat et al. [12].

In the following comparison, we study the model using ELMo as input (w/ELMo) and the model
without ELMo (w/o ELMo).

5.2 Results

Table 1 shows the experimental results for POS tagging and universal dependency parsing. From
this table, we can see that ELMo consistently improves the performance on the 57 tested treebanks.
More specifically, ELMo improves the UPOS accuracy for 51 out of 57 treebanks with a macro ac-
curacy gain of 0.91 and the macro error reduction of 24% for the POS tagging. For the universal
dependency parsing, ELMo improves the LAS for 54 out of 57 treebanks. The macro LAS improve-
ment is 1.11 and the macro error reduction is 7%. These results clearly show that the ELMo can
help the POS tagging and universal dependency parsing.
In this table, we compare our ELMo-enhanced tagger and parser with the other state-of-the-art

UD parsing systems including (1) the joint POS tagging, lemmatization, and parsing model from
UDpipe 2.0 [38] and (2) the BERT initialized multi-lingual multi-task model from UDify [21]. The

1We release our pre-trained ELMo at https://github.com/HIT-SCIR/ELMoForManyLangs.
2For example, Japanese-GSD does not provide XPOS tags and the corresponding fields are filled with underscores (_).

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

https://github.com/HIT-SCIR/ELMoForManyLangs

9:8 Y. Liu et al.

Table 1. The Experimental Results of UD Parsing Comparing Models With and Without ELMo

w/o ELMo w/ELMo w/o ELMo w/ELMo

Treebank UPOS LAS UPOS LAS Treebank UPOS LAS UPOS LAS

Arabic-PADT 96.73 82.88 96.93 83.64 Italian-PoSTWITA 95.93 80.54 96.82 81.77

Bulgarian-BTB 98.40 90.80 99.13 91.78 Japanese-GSD 97.76 92.51 97.96 92.70

Catalan-AnCora 97.37 91.05 98.89 91.40 Korean-GSD 96.25 83.71 96.60 84.94

Czech-CAC 99.01 91.22 99.25 91.40 Korean-Kaist 95.32 86.62 95.68 86.40

Czech-FicTree 98.55 91.08 98.57 91.57 Latin-ITTB 98.55 89.04 98.53 88.90

Czech-PDT 98.99 92.36 99.13 92.39 Latin-PROIEL 96.23 79.06 97.03 80.49

Old_Church_Slavonic-PROIEL 96.61 81.01 96.47 82.26 Latvian-LVTB 93.96 82.43 96.07 83.87

Danish-DDT 96.97 85.19 97.95 86.34 Dutch-Alpino 96.09 87.43 96.35 90.21

German-GSD 94.40 81.26 94.89 81.79 Dutch-LassySmall 95.78 85.96 96.61 87.51

Greek-GDT 96.57 88.18 98.02 89.31 Norwegian-Bokmaal 97.46 90.78 98.36 91.67

English-EWT 95.96 87.62 96.74 88.27 Norwegian-Nynorsk 97.19 90.42 98.20 91.33

English-GUM 93.57 84.08 96.42 86.00 Polish-LFG 97.90 95.03 98.83 94.73

English-LinES 96.52 79.68 97.14 80.46 Polish-SZ 97.24 91.74 98.32 92.18

Spanish-AnCora 97.78 90.44 98.84 90.86 Portuguese-Bosque 96.20 89.12 97.21 89.85

Estonian-EDT 96.26 85.10 97.49 85.48 Romanian-RRT 97.53 86.90 97.97 86.95

Basque-BDT 95.22 81.85 96.48 83.56 Russian-SynTagRus 97.81 92.96 99.02 93.09

Persian-Seraji 97.22 87.20 97.93 88.15 Slovak-SNK 93.96 88.11 97.08 90.13

Finnish-FTB 95.89 89.11 96.87 89.94 Slovenian-SSJ 97.74 92.01 98.61 92.04

Finnish-TDT 96.24 87.99 97.48 89.65 Swedish-LinES 96.39 81.72 97.38 83.21

French-GSD 97.13 87.93 97.59 88.62 Swedish-Talbanken 97.60 86.61 98.09 88.26

French-Sequoia 98.27 89.12 98.91 91.18 Turkish-IMST 95.66 64.97 96.65 68.03

French-Spoken 94.24 74.95 96.31 77.79 Uyghur-UDT 89.84 65.32 89.68 68.13

Galician-CTG 97.71 83.31 97.71 83.45 Ukrainian-IU 96.20 85.50 97.74 86.40

Ancient_Greek-Perseus 92.05 75.12 94.39 78.73 Urdu-UDTB 94.39 81.66 94.21 82.26

Ancient_Greek-PROIEL 96.86 81.76 97.85 83.75 Vietnamese-VTB 88.99 60.27 90.54 62.12

Hebrew-HTB 96.43 85.21 97.34 87.21 Chinese-GSD 94.60 79.70 94.30 79.85

Hindi-HDTB 97.24 92.00 97.60 92.19 macro average score UPOS LAS

Croatian-SET 97.35 86.51 98.14 87.24 w/o ELMo 96.15 84.94

Hungarian-Szeged 92.96 76.69 96.59 81.35 w/ ELMo 97.07 86.04

Indonesian-GSD 91.82 79.21 93.76 79.03 UDpipe 2.0 [38] 96.94 85.05

Italian-ISDT 97.89 91.52 98.41 92.48 UDify [21] 95.88 85.50

The bold number shows the winning model. Our ELMo-enhanced model outperforms that without ELMo on a large

proportion of the evaluated treebanks.

results are shown in the bottom right block.3 From this comparison, ELMo helps the biaffine parser
to achieve state-of-the-art performance on the tested treebanks.
We also study the correlation between UPOS improvements and LAS improvements. Their Pear-

son correlation is 0.5196 with a p-value of less than 0.001. This shows the improvements resulted
from using ELMo are consistent across our two syntactic tasks.

3Ihe evaluation in the original UDpipe 2.0 paper involved sentence segmentation and tokenization. This made the original

results not directly comparable. The results we report are extracted from Table 6 of Kondratyuk [21].

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:9

6 ANALYSIS

6.1 OOV Rate is More Related to the Performance Gains

Section 5.2 shows that POS tagging and UD parsing can be improved with ELMo. However, the
effects of ELMo vary across different treebanks, from a negative effect on Galician-CTG to the
largest positive effect on Hungarian-Szeged.4 This observation indicates the effects of ELMo can
be related to the attributes of treebanks. To gain insight into these attributes, we conduct analysis
experiments across the treebanks of different languages to examine how their attributes relate with
the performance gains. In this article, we focus on five attributes of each treebank which include
the following:

—Training size: We use the log number of tokens in the training data to denote the training
size.5

—Morphological complexity: We follow Bentz et al. [3] and use the word entropy as a corpus-
based evaluation for the morphological complexity. According to Bentz et al. [3], word en-
tropy shows good correlation with the morphological complexity defined by linguistics [13,
World Atlas of Language Structures project].

—Nonprojectivity: We use the percentage of nonprojective arcs in the training data as the
evaluation of the nonprojectivity.

—Polysemy rate: we define a word as a polysemous word if it has multiple UPOS presented in
the dataset. We use the proportion of such words as the polysemy rate. Since the contex-
tualized embeddings are designed to cope with the polysemy in words, we expect that the
parser using ELMo to be better at the treebank, which is rich in polysemous words.

—OOV rate: We define a word as an OOV word as it occurs in the test data but not in the
training data. The percentage of such words in the test data is defined as the OOV rate.

Three of these attributes (training size, morphological complexity, and nonprojectivity) are in-
spired by the analysis work of Dozat et al. [12].
We first plot the UPOS/LAS improvements and error reductions against these attributes for each

treebank in Figure 4. From this figure, we observe a generally monotonic relation between these
attributes and ELMo’s performance gains, except for the nonprojectivity which seems unrelated.
Based on this plot, we calculate two monotonic correlation coefficients (Pearson correlation and
Spearman correlation) of these attributes with the performance gains and the results are shown in
Table 2. Since the values of these correlations are not fully interpretable, we only use them as an
indication of which attribute is more related to the performance gain. From this table, we can see
that among all these factors, the OOV rate is most correlated with the improvements. We need to
note that the size of the training data also presents some correlation with the dependency parsing
improvements. However, there is usually more OOVwords in a smaller treebank, which means the
training size and OOV rate are correlated.6 We consider OOV rate as a more informative attribute
and its correlations are consistent in POS tagging and dependency parsing.
Beyond these attributes, one may argue the potential existence of non-treebank related at-

tributes that correlate with ELMo’s performance gains. We follow Ma et al. [25] and McDonald
and Nivre [29] to examine three structural attributes including dependency length, distance to root,
and number of modifier siblings. The underlying assumption is that the parser with ELMo might
favor a certain type of arcs (say better long-distance dependencies because of better context en-
coding). We plot their relations in Figure 5 along with the relative error reduction. We can see

4ELMo leads to a drop of 0.30 on UPOS for Galician-CTG and a gain of 4.56 on Hungarian-Szeged.
5With a base of 10.
6In our case, the Pearson correlation between training size and OOV rate is −0.5477.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

9:10 Y. Liu et al.

Fig. 4. The relation between five attributes and the ELMo’s improvements (imp.) and error reduction (e.r.)

for POS tagging (UPOS) and UD parsing (LAS). Each point in this figure denotes a treebank.

Table 2. The Pearson/Spearman Correlation between Five Attributes and the Improvements and Error

Reduction for Each Treebank

UPOS LAS
metric improvement error reduction improvement error reduction

training size −0.30 / −0.23 0.03 / −0.05 −0.58 / −0.56 −0.36 / −0.39
morphological complexity 0.26 / 0.25 0.20 / 0.20 0.24 / 0.19 0.17 / 0.17
nonprojectivity 0.14 / 0.05 −0.07 / −0.09 0.33 / 0.11 0.14 / 0.04
polysemy rate −0.20 / −0.15 −0.10 / −0.15 −0.17 / −0.14 −0.13 / −0.12
OOV rate 0.51 / 0.44 0.22 / 0.24 0.52 / 0.43 0.33 / 0.33

Bold number show the highest (absolute) correlation value.

Fig. 5. Dependency arc precision/recall relative to three attributes. The dashed green line shows the error

reduction. The limits of y-axis for error reduction are fixed to (0.0, 0.3).

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:11

Table 3. A Comparison on the IV and OOV

Performance of Two Models

IV OOV
models UPOS LAS UPOS LAS
w/o ELMo 98.00 87.97 88.50 79.52
w/ ELMo 98.27 88.58 93.36 81.32

13.50% 5.07% 42.26% 8.79%

The last row shows the error reductions led by using ELMo

against the baseline without ELMo.

Fig. 6. The POS tag error distributions of our models with and without ELMo.

that the error reductions do not show consistent trends with these attributes, which indicates the
weak correlation between performance gains and structural attributes. Thus, we stick to analyzing
ELMo’s effect of OOV in the following section.

6.2 Detailed Out-of-Vocabulary Words Performance

To further confirm that the improvements that are brought by ELMomainly happen inOOVwords,
we compare the model’s in-vocabulary-word (IV) and OOV performances on a concatenation of
the test data.7 The results are shown in Table 3. From this table, ELMo bringsmore improvements to
OOVwords than IV words on both the POS tagging and dependency parsing. For POS tagging, the
absolute improvement is 4.86 and error reduction is 42.26%. For dependency parsing, the absolute
improvement is 1.80 and error reduction is 8.79%.
In addition to the detailed OOV performance, we plot the POS error distributions of our models

with and without ELMo in Figure 6. In this figure, these two models tie on the tags for function
words like auxiliary words (AUX), coordinating conjunctions (CCONJ), and subordinating conjunc-

tions (SCONJ). But, the model with ELMo clearly wins in the proper nouns (PROPN). This result
testifies to ELMo’s effect on OOV in another direction because OOV word, as an emerging new
entity name, happens more with the PROPN tag.

6.3 Memorize or Guess: ELMo Can Guess OOV’s Syntactic Functions

OOVwords have long been the problem that hinders the performance of NLP systems. The general
solution for the OOV words problem is representing a word with high-level abstraction. Such
abstraction can be achieved by either (1) memorizing the association between the OOV word and
their abstractive symbols (POS, cluster id, and so on) [23] or (2) abstracting the OOVword’s context
and meta-features [2, 8]. In terms of learning better word abstraction, ELMo is a potential solution
for two reasons: (1) The training process of ELMo encounters numerous words, which means that

7The proportions of IV and OOV words within the test data are 87.38% and 12.62%.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

9:12 Y. Liu et al.

Table 4. A Comparison on the OOV Word Performance

recalled (79%) un-recalled (21%)
models UPOS LAS UPOS LAS
w/o ELMo 88.85 79.52 88.29 79.52
w/ ELMo 93.90 81.42 92.05 80.99

45.29% 9.27% 32.11% 7.18%

We categorize OOV words into two types, indicating whether a word is

recalled during the learning of ELMo. The number in the brackets repre-

sents the proportion of recalled and un-recalled OOV. The last row shows

the error reductions as in Table 3.

ELMo “memorizes” words. (2) ELMo uses a CNN to model a word and uses bidirectional LSTM
to model context, which means that ELMo “guesses” the word’s syntactic functions by contextual
and morphological features.
It is expected that ELMo improves the “memorized” OOV words. However, we are interested

in the performance of OOV words that are never encountered during ELMo and parser learning,
thus calling for properly “guessing.” To accomplish this, we categorize an OOV word into two
types, indicating whether this word is encountered (recalled) during the learning of ELMo. The
recalled OOV performance can be treated as an evaluation of the “memorizing” effects, and the
un-recalled OOV performance reflects the “guessing” effects. We show the OOV performance on
POS tagging and dependency parsing in Table 4. From this table, we can see that the performances
of both recalled and un-recalled OOV words are both higher than those of the model without
ELMo, and their improvements are comparable where the error reduction on “memorized” OOV
is slightly higher. This result shows that ELMo can guess an OOV’s syntactic function as well as
memorize it. This should be done through proper abstraction and this ability contributes to the
improvements.

6.4 Context or Morphology: ELMo Guesses OOV’s Syntactic Function
According to Its Morphology

In the previous section, ELMo can “guess” a word’s syntactic functions through abstraction. We
would further ask how ELMo achieves this, according to OOV’s context which is encoded by the
bidirectional LSTM or OOV’s morphological features which are encoded by character-level word
representation.
To track which of these two factors counts more, we compare the ELMo with character CNN

(marked as char ELMo) with several baselines including the following:

—FastText: We replace the Word2vec embeddings with FastText [4] in the w/o ELMo baseline
since it adopts the character-level encoding scheme and can naturally deal with OOVs. This
comparison tests if we can achieve similar performance with static embeddings learned
with morphology in mind.

—character CNN: We only use the context-independent layer of the char ELMo as the embed-
dings. This baseline eliminates the contextual effects in ELMo and directly tests if similar
performance gain can be achieved without context encoding.

—word ELMo: We replace the character-level CNN with vanilla word embeddings and train
new contextualized embeddings using the same settings in Section 5.1. This baseline tests
if similar performance gain can be achieved by mainly encoding the context.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:13

Table 5. The Comparison with Baselines Using Different Inputs

w/o context w/context

Word2vec FastText char CNN char ELMo word ELMo

Treebank UPOS LAS UPOS LAS UPOS LAS UPOS LAS UPOS LAS

Dutch-Alpino 93.32 86.73 94.69 86.13 95.65 88.10 96.13 87.86 94.82 86.73

Dutch-LassySmall 93.11 85.06 95.02 84.95 96.54 86.56 96.52 87.05 95.33 86.22

English-EWT 94.24 86.71 94.42 86.20 96.14 87.35 96.21 87.53 95.47 87.10

English-GUM 92.59 83.00 93.16 81.90 95.79 85.84 95.97 86.07 95.55 85.00

English-LinES 94.73 78.24 95.16 77.78 96.69 79.53 96.93 79.59 96.27 79.37

French-GSD 95.67 87.07 96.61 86.82 97.36 87.52 97.47 87.40 96.86 87.40

French-Sequoia 97.10 87.83 97.41 87.50 98.27 89.82 98.62 90.12 98.16 89.64

French-Spoken 92.67 73.90 94.67 74.14 96.27 75.88 96.59 75.64 95.86 75.64

Hungarian-Szeged 87.09 70.85 92.90 74.67 95.95 79.89 96.46 81.02 92.90 76.35

Italian-ISDT 96.82 90.18 97.68 89.80 98.05 90.11 98.24 90.85 97.93 90.46

Italian-PoSTWITA 92.84 78.79 94.25 79.67 95.79 80.15 96.06 80.01 94.94 79.10

Slovak-SNK 86.27 84.42 92.98 84.35 96.65 86.23 96.61 86.11 93.63 85.73

Macro average 93.04 82.73 94.91 82.83 96.60 84.75 96.82 84.94 95.64 84.06

Micro IV 96.80 84.94 96.81 84.73 97.58 86.19 97.68 86.32 97.42 85.96

error reduction 0.39% −1.41% 24.41% 8.30% 24.61% 9.17% 19.57% 6.78%

Micro OOV 72.59 72.15 83.69 73.34 90.74 77.38 91.50 77.82 85.52 74.68

error reduction 40.51% 4.27% 66.20% 18.76% 69.00% 20.35% 47.18% 9.06%

Micro unrecalled OOV 62.83 62.83 75.05 68.23 85.56 72.79 86.74 73.60 68.48 64.07

error reduction 32.86% 14.52% 61.16% 26.86% 64.32% 28.96% 15.19% 3.32%

Six languages8 are studied, either because of a large OOV proportion or multiple-treebanks
of different sizes presented for the certain language. To eliminate the OOV abstraction from the
character model (v̂i in Equation (4)) in the biaffine parser, we only use the combination of tuned
word vector (w in Equation (4)) and the fixed embeddings (either static or contextualized) as input.
The comparison is shown in Table 5. From this table, we can see that the ELMowith character CNN
(char CNN and char ELMo) consistently outperforms that with vanilla word embeddings (Word2vec

and word ELMo) and using character CNN leads to significant OOV error reduction. This indicates
that the character CNN plays an important role in better abstracting; OOV thus achieves better
performance.
By comparingWord2vec and FastText in Table 5, we observe improvements with properly mod-

eling morphology features in the static embeddings. However, the model with FastText lags that of
either using character CNN from ELMo or using contextual embeddings. Since FastText is learned
on a magnitude larger unlabeled corpus than our ELMo, we attribute the better morphology rep-
resentation of ELMo’s character CNN to the scheme of language modeling.
Another notable finding is that themodel using the context-independent layer of ELMo achieves

similar performance with the model that uses full ELMo and it outperforms the word ELMo. We
further investigate the part that requires contextual encoding. Polysemy is a typical problem that
requires modeling context and we evaluate the polysemous/monosemous words performance of
the ELMo model. We use whether a word has multiple POS in the training data as a proxy for
judging its polysemy and the parsing performance is shown in Table 6.9 From this table, we observe

8Including Dutch, English, French, Hungarian, Italian, and Slovak.
9Since we use POS tags as an indicator for polysemy, we do not include UPOS results concerning the bias.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

9:14 Y. Liu et al.

Table 6. A Comparison of the Polysemous/

Monosemous Word Performance

model Polysemous Monosemous
w/o ELMo 88.90 87.84
w/ELMo 89.47 88.12

5.13% 5.13%

We determine a word as polysemy when it has mul-

tiple POS in the training data. The last row shows the

error reductions.

Fig. 7. Visualization of the OOV word embeddings from ELMo (left) and Word2vec (right) along with the

prototype word for 4 POS tags for content words. The left figure presents more words than the right one be-

cause ELMo can produce embeddings for any word, whileWord2vec only yields embeddings for encountered

words, and some OOV words are not recalled.

the identical error reduction on polysemous and monosemic words. This indicates that although
designed to represent polysemy, the by-product of better context-independentword representation
from ELMo also helps to achieve better performance.

6.5 Visualization

As discussed in the previous section, character CNN plays an important role. To get a view of
the character-level word representation, we visualize its output on OOV words using T-SNE [26].
We also plot some prototype words of certain POS tags.10 The results are shown in Figure 7. The
colors of the points represent the POS tags for corresponding words.11 From this figure, we can
see that the embeddings of different OOV words are clustered by their POS tags and this shows
the embeddings from ELMo have the ability to capture syntactic properties of words, especially
the rare words. Additional comparison with the embeddings from Word2vec shows that the
Word2vec embeddings for the same POS tag scatter in different places in the embedding space,
which do not capture syntactic similarity between words.

6.6 Low-Resource Parsing Simulation

All our analyses point to that the ELMo improves the performance of syntactic NLP tasks by im-
proving the OOV words. A typical scenario that presents severe OOV is the data-insufficient NLP
problems in low-resource, one-shot, or even zero-shot settings. It’s promising to use ELMo for
these tasks to achieve better performance. To test this hypothesis, we simulate the low-resource

10The OOV words are extracted from UD_English-EWT data. We use Bush and Iraq as the prototype words for PROPN,

people and food for NOUN, good and other for ADJ, and know and get for VERB.
11About 97% of the OOV words have mono POS tag.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:15

Fig. 8. The simulation results on low-resource settings.

settings by only using 0.5%, 1%, 2%, 5%, 10%, and 20% of the UD_English-EWT and UD_German-
GSD training data and compare the model with and without ELMo’s performance. The plot is
shown in Figure 8.12 From this figure, we can see that the system benefits more from ELMo when
there is only a small proportion of training data. This observation confirms our hypothesis that
contextual vectors help in low-resource settings. According to Howard and Ruder [17], the pre-
trained language model helps to train a model with only a small number of labeled data because of
its transfer ability. In this article, we further attribute this transfer ability to the word abstraction
from ELMo.

7 CONCLUSIONS

In this article, we use ELMo as an additional word embedding which leads to consistent improve-
ments on the syntactic problems—universal POS tagging and dependency parsing. Further anal-
ysis indicates the improvements mainly result from better OOV word abstraction to which the
character-level word representation in the ELMo contributes a lot. The analysis results hint that
ELMo can be a promising technique for NLP tasks whose data are insufficient and a simulation of
the low-resource situation confirms that.

REFERENCES

[1] Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for sequence labeling. In Proc.

of Coling. http://www.aclweb.org/anthology/C18-1139.

[2] Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by modeling characters

instead of words with LSTMs. In Proc. of EMNLP.

[3] Christian Bentz, Tatyana Ruzsics, Alexander Koplenig, and Tanja Samardzic. 2016. A comparison between morpho-

logical complexity measures: Typological data vs. language corpora. In Proc. of the Workshop on Computational Lin-

guistics for Linguistic Complexity (CL4LC’16).

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics 5, 1 (2017), 135–146. https://www.aclweb.

org/anthology/Q17-1010.

[5] Samuel R. Bowman, Ellie Pavlick, Edouard Grave, Benjamin Van Durme, AlexWang, Jan Hula, Patrick Xia, Raghaven-

dra Pappagari, R. Thomas McCoy, Roma Patel, Najoung Kim, Ian Tenney, Yinghui Huang, Katherin Yu, Shuning Jin,

12To simulate the real world situation, we assume that we cannot access a high-quality POS tagger for low-resource parsing,

thus we only use words as input for the parsing experiments. This made the result in Figure 8 with full training data not

identical to that in Table 1.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

http://www.aclweb.org/anthology/C18-1139
PLX-HTTPS://www.aclweb.org/anthology/Q17-1010
PLX-HTTPS://www.aclweb.org/anthology/Q17-1010

9:16 Y. Liu et al.

and Berlin Chen. 2018. Looking for ELMo’s friends: Sentence-level pretraining beyond language modeling. CoRR

abs/1812.10860 (2018). arxiv:1812.10860 http://arxiv.org/abs/1812.10860.

[6] Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. 2009. Improving dependency parsing

with subtrees from auto-parsed data. In Proc. of EMNLP.

[7] W. Chen, M. Zhang, and Y. Zhang. 2015. Distributed feature representations for dependency parsing. IEEE/ACM

Transactions on Audio, Speech, and Language Processing 23, 3 (March 2015), 451–460. DOI:https://doi.org/10.1109/
TASLP.2014.2365359

[8] Michael Collins. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with

perceptron algorithms. In Proc. of EMNLP. DOI:https://doi.org/10.3115/1118693.1118694
[9] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language modeling with gated convolutional

networks. In Proc. of ICML, Vol. 70.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional

transformers for language understanding. CoRR abs/1810.04805 (2018). arxiv:1810.04805

[11] Timothy Dozat and Christopher D. Manning. 2016. Deep biaffine attention for neural dependency parsing. CoRR

abs/1611.01734 (2016). arxiv:1611.01734

[12] Timothy Dozat, Peng Qi, and Christopher D. Manning. 2017. Stanford’s graph-based neural dependency parser at

the CoNLL 2017 shared task. In Proc. of CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal

Dependencies.

[13] Matthew S. Dryer and Martin Haspelmath (Eds.). 2013.WALS Online. Max Planck Institute for Evolutionary Anthro-

pology, Leipzig.

[14] Chris Dyer, Miguel Ballesteros,Wang Ling, AustinMatthews, and Noah A. Smith. 2015. Transition-based dependency

parsing with stack long short-term memory. In Proc. of ACL.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image recognition. CoRR

abs/1512.03385 (2015). arxiv:1512.03385 http://arxiv.org/abs/1512.03385.

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (Nov. 1997).

DOI:https://doi.org/10.1162/neco.1997.9.8.1735
[17] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classification. In Proc. of

ACL.

[18] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. 2016. Densely connected convolutional networks. CoRR

abs/1608.06993 (2016). arxiv:1608.06993 http://arxiv.org/abs/1608.06993.

[19] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On using very large target vocabulary

for neural machine translation. In Proc. of ACL.

[20] Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018. Extending a parser to distant domains using a few dozen

partially annotated examples. In Proc. of ACL.

[21] Daniel Kondratyuk. 2019. 75 languages, 1 model: Parsing universal dependencies universally. CoRR abs/1904.02099

(2019). arxiv:1904.02099 http://arxiv.org/abs/1904.02099.

[22] Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-order coreference resolution with coarse-to-fine infer-

ence. In Proc. of NAACL.

[23] Percy Liang. 2005. Semi-supervised Learning for Natural Language. Master’s Thesis. MIT.

[24] P. Liang, H. Daumé, and D. Klein. 2008. Structure compilation: Trading structure for features. In Proc. of the 25th

International Conference on Machine Learning (ICML’08), 592–599.

[25] XuezheMa, ZecongHu, Jingzhou Liu, Nanyun Peng, GrahamNeubig, and EduardHovy. 2018. Stack-pointer networks

for dependency parsing. In Proc. of ACL. https://www.aclweb.org/anthology/P18-1130.

[26] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Re-

search 9 (2008).

[27] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of

english: The Penn treebank. Computational Linguistic 19, 2 (1993), 313–330.

[28] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017. Learned in translation: Contextualized

word vectors. In NIPS 30. 6294–6305.

[29] Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing models. In

Proc. of EMNLP.

[30] Ryan T. McDonald and Fernando C. N. Pereira. 2006. Online learning of approximate dependency parsing algorithms.

In Proc. of EACL.

[31] TomasMikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words

and phrases and their compositionality. CoRR abs/1310.4546 (2013).

[32] Joakim Nivre. 2008. Algorithms for deterministic incremental dependency parsing. Computational Linguistics 34, 4

(2008).

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

http://arxiv.org/abs/1812.10860
https://doi.org/10.1109/TASLP.2014.2365359
https://doi.org/10.1109/TASLP.2014.2365359
https://doi.org/10.3115/1118693.1118694
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1904.02099
PLX-HTTPS://www.aclweb.org/anthology/P18-1130

Deep Contextualized Word Embeddings for Universal Dependency Parsing 9:17

[33] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher Manning, Ryan

McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal depen-

dencies v1: A multilingual treebank collection. In Proc. of LREC-2016.

[34] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation.

In Proc. of EMNLP.

[35] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.

2018. Deep contextualized word representations. In Proc. of NAACL.

[36] Matthew Peters, Mark Neumann, Luke Zettlemoyer, andWen-tau Yih. 2018. Dissecting contextual word embeddings:

Architecture and representation. In Proc. of EMNLP.

[37] Matthew Peters, Sebastian Ruder, and Noah A. Smith. 2019. To tune or not to tune? Adapting pretrained representa-

tions to diverse tasks. CoRR abs/1903.05987 (2019). arxiv:1903.05987 http://arxiv.org/abs/1903.05987.

[38] Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proc. of the CoNLL 2018 Shared Task:

Multilingual Parsing from Raw Text to Universal Dependencies. https://www.aclweb.org/anthology/K18-2020.

[39] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R. Thomas McCoy, Najoung Kim, Benjamin Van

Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. 2019. What do you learn from context? Probing for sentence

structure in contextualized word representations. In International Conference on Learning Representations. https://

openreview.net/forum?id=SJzSgnRcKX.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In NIPS 30. 5998–6008.

[41] Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre, Martin Popel, and Milan Straka. 2018. CoNLL 2018 shared task:

Multilingual parsing from raw text to universal dependencies. In Proc. of the CoNLL 2018 Shared Task: Multilingual

Parsing from Raw Text to Universal Dependencies.

[42] Kelly Zhang and Samuel Bowman. 2018. Language modeling teaches you more than translation does: Lessons learned

through auxiliary syntactic task analysis. In Proc. of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Inter-

preting Neural Networks for NLP. http://www.aclweb.org/anthology/W18-5448.

[43] Yue Zhang and Joakim Nivre. 2011. Transition-based dependency parsing with rich non-local features. In Proc. of

ACL.

Received March 2019; revised April 2019; accepted April 2019

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 1, Article 9. Publication date: July 2019.

http://arxiv.org/abs/1903.05987
PLX-HTTPS://www.aclweb.org/anthology/K18-2020
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
http://www.aclweb.org/anthology/W18-5448

