Syntactic and Semantic Parsing

Wanxiang Che

Research Center for Social Computing and Information Retrieval Harbin Institute of Technology

2017-12-1

Why Do We Need Parsing?

- □ Parsing proposes the (syntactic or semantic) relations between words
- □ These relations are important for many applications

Outline

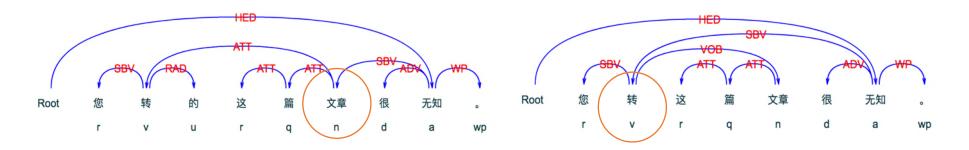
- 1. Syntactic and Semantic Parsing
- 2. Pseudo Data for Parsing
- 3. Applications of Parsing
- 4. Summary

Outline

- 1. Syntactic and Semantic Parsing
- 2. Pseudo Data for Parsing
- 3. Applications of Parsing
- 4. Summary

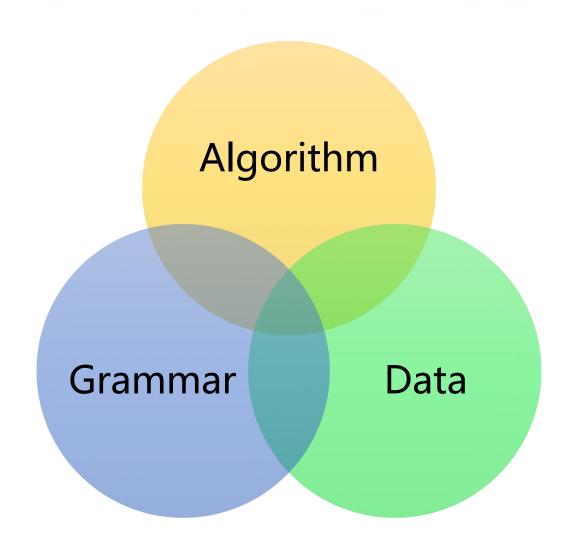
Syntactic and Semantic Parsing

- □ The analysis of a sentence into its constituents, resulting in a parse tree or graph showing their syntactic or semantic relation to each other
- ☐ A traditional and core NLP task

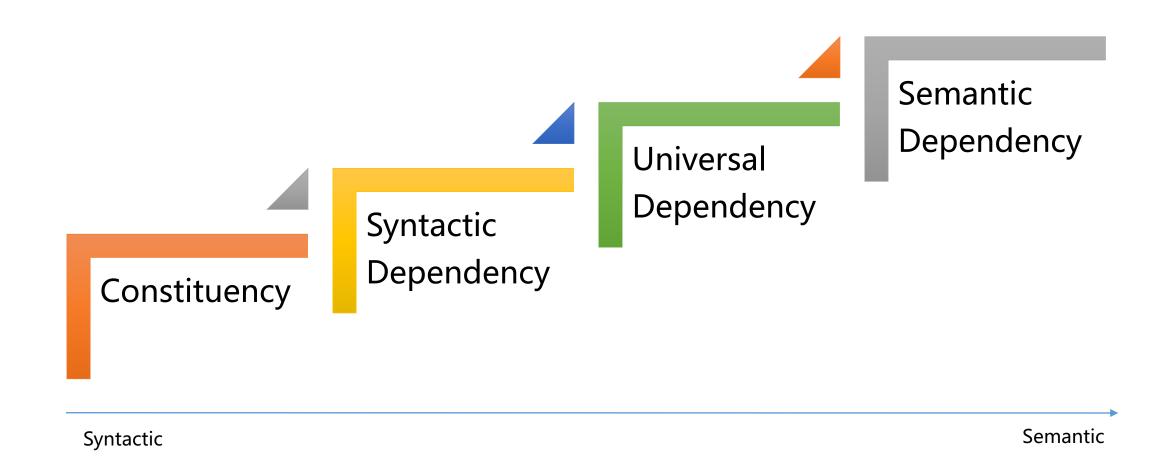


http://ltp.ai/demo.html

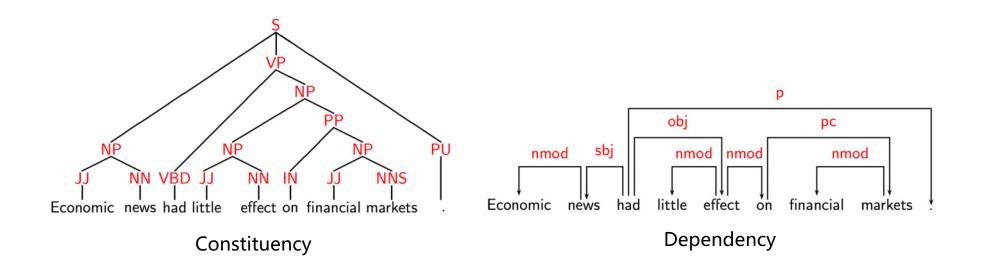
Components of Parsing



Grammar

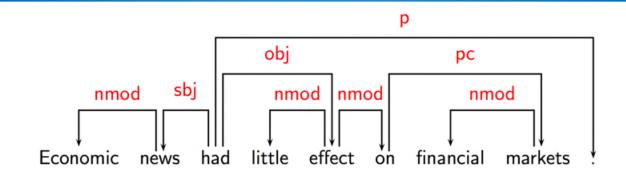


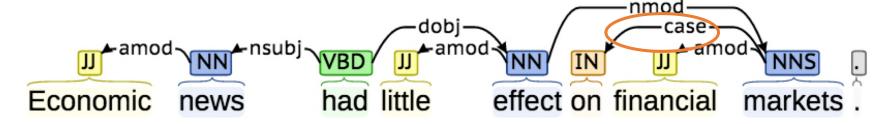
Constituency vs. Dependency



- Dependency Structures
 - Usually easier to be understood
 - More amenable to annotators

Syntactic vs. Universal Dependency

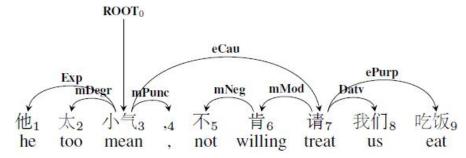




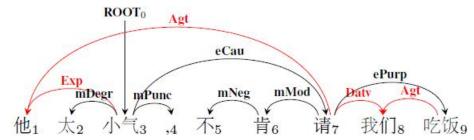
http://nlp.stanford.edu/software/stanford-dependencies.shtml

- Universal Dependencies pay more attention to relations between content words
- ☐ The universal annotation scheme for all languages

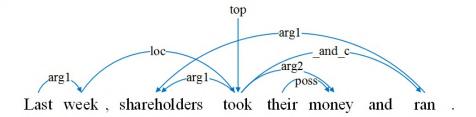
Semantic Dependency Tree and Graph

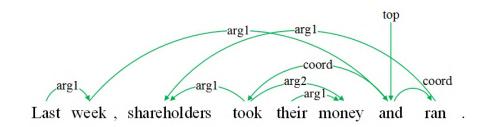


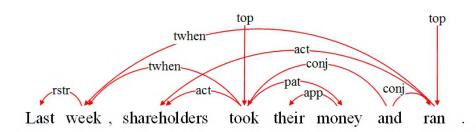
SemEval 2012 Task 5 : Chinese Semantic Dependency (Tree)



SemEval 2016 Task 9 : Chinese Semantic Dependency (Graph)

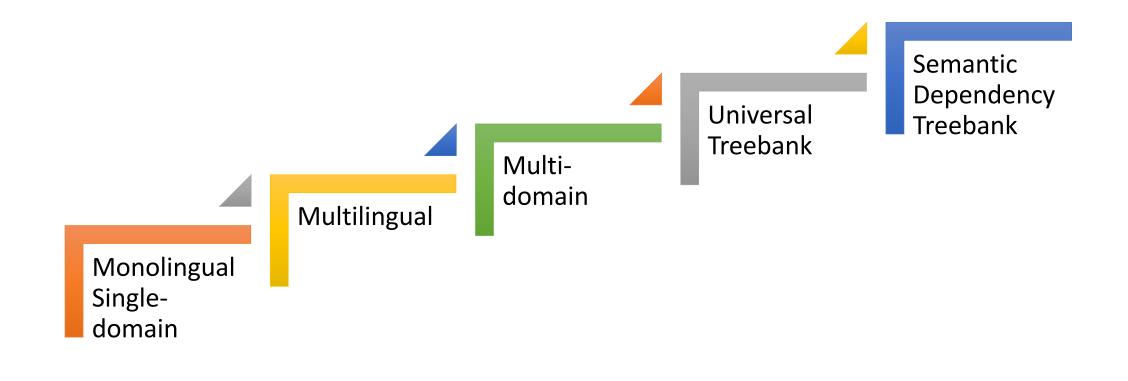






SemEval 2015 Task 18: Broad-Coverage Semantic Dependency (Graph)

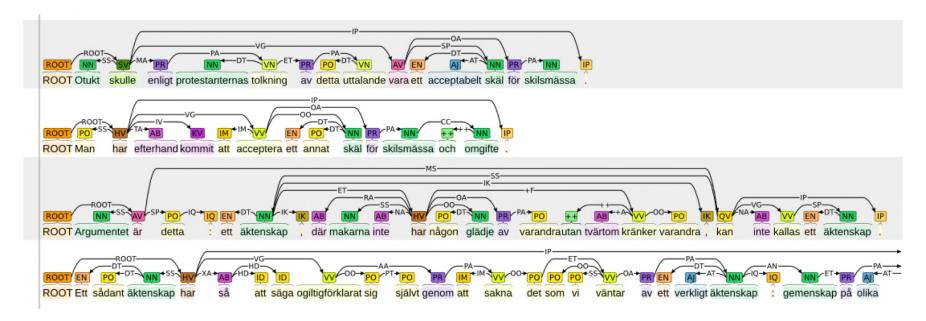
Data



Rich-resource Low-resource

Multilingual Treebanks

- □ CoNLL 2006, 2007 Shared Tasks
 - □ http://ilk.uvt.nl/conll/
 - 10 12 Languages



Syntactic and Semantic Dependencies in Multiple Languages

- □ CoNLL 2009 Shared Task
 - □ http://ufal.mff.cuni.cz/conll2009-st/
 - Syntactic and Semantic Dependencies in Multiple Languages
 - □ 7 Languages
 - We achieved Rank 1

Rank	System	Average	Catalan	Chinese	Czech	English	German	Japanese	Spanish
1	Che	82.64	81.84	<u> </u>	<u> </u>	87.00	<u>@</u> 82.44	@ 85.65	81.90
2	Chen	82.52	<u>0</u> 83.01	76.23	80.87	<u>0</u> 87.69	81.22	85.28	<u>0</u> 83.31
3	Merlo	82.14	82.66	76.15	83.21	86.03	79.59	84.91	82.43
4	Bohnet	80.85	80.44	75.91	79.57	85.14	81.60	82.51	80.75
5	Asahara	78.43	75.91	73.43	81.43	86.40	69.84	84.86	77.12
6	Brown	77.27	77.40	72.12	75.66	83.98	77.86	76.65	77.21
7	Zhang	76.49	75.00	73.42	76.93	82.88	73.76	78.17	75.25
8	Dai	73.98	72.09	72.72	67.14	81.89	75.00	80.89	68.14
9	Lu Li	73.97	71.32	65.53	75.85	81.92	70.93	80.49	71.72
10	Lluís	71.49	56.64	66.18	75.95	81.69	72.31	81.76	65.91
11	Vallejo	70.81	73.75	67.16	60.50	78.19	67.51	77.75	70.78
12	Ren	67.81	59.42	75.90	60.18	77.83	65.77	77.63	57.96
13	Zeman	51.07	49.61	43.50	GH S 7.95	50.27	49.57	57.69	48.90

Multiple Domain

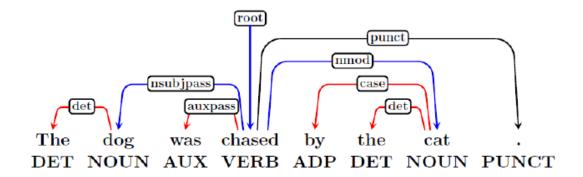
- Syntactic Analysis of Non-Canonical Language (SANCL) 2012 Shared Task
 - □ https://sites.google.com/site/sancl2012/
 - Organized by Google
 - □ Data: Google Web Treebank (CQA, Newsgroup, Online Review)
 - We achieved Rank 2 (Stanford) and 3 (HIT)

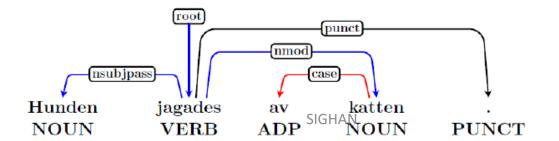
Dependency Parsing Results:

	Domain A (answers)			Domain B (newsgroups)		Domain C (reviews)			Domain D (wsj)			Average (A-C)			
Team	LAS	UAS	POS	LAS	UAS	POS	LAS	UAS	POS	LAS	UAS	POS	LAS	UAS	POS
Zhang&Nivre*	76.60	81.59	89.74	81.62	85.19	91.17	78.10	83.32	89.60	89.37	91.46	96.84	78.77	83.37	90.17
UPenn	68.54	82.28	89.65	74.41	86.10	90.99	70.17	82.88	89.02	81.74	91.99	96.93	71.04	83.75	89.89
UMass	72.51	78.36	89.42	77.23	81.61	91.28	74.89	80.34	89.90	81.15	83.97	94.71	74.88	80.10	90.20
NAIST	73.54	79.89	89.92	79.83	84.59	91.39	75.72	81.99	90.47	87.95	90.99	97.40	76.36	82.16	90.59
IMS-2	74.43	80.77	89.50	79.63	84.29	90.72	76.55	82.18	89.41	86.88	89.90	97.02	76.87	82.41	89.88
IMS-3	75.90	81.30	88.24	79.77	83.96	89.70	77.61	82.38	88.15	86.02	88.89	95.14	77.76	82.55	88.70
IMS-1	78.33	83.20	91.07	83.16	86.86	91.70	79.02	83.82	90.01	90.82	92.73	97.57	80.17	84.63	90.93
Copenhagen	78.12	82.91	90.42	82.90	86.59	91.15	79.58	84.13	89.83	90.47	92.42	97.25	80.20	84.54	90.47
Stanford-2	77.50	82.57	90.30	83.56	87.18	91.49	79.70	84.37	90.46	89.87	91.95	95.00	80.25	84.71	90.75
HIT-Baseline	80.75	85 84	90 99	85 26	88 90	92 32	81 60	86 60	90.65	91.88	93.88	97.76	82 54	87 11	91 32
HIT-Domain	80.79	85.86	90.99	85.18	88.81	92.32	81.92	86.80	90.65	91.82	93.83	97.76	82.63	87.16	91.32
Stanford-1	81.01	85.70	90.30	85.85	89.10	91.49	82.54	86.73	90.46	91.50	93.38	95.00	83.13	87.18	90.75
DCU-Paris13	81.15	85.80	91.79	85.38	88.74	93.81	C 83.86 N	88.31	93.11	89.67	91.79	97.29	83.46	87.62	92.90

Universal Treebank

- Universal Dependencies and POS Tags
 - □ http://universaldependencies.org/
 - □ 50+ Languages, 70+ Treebanks





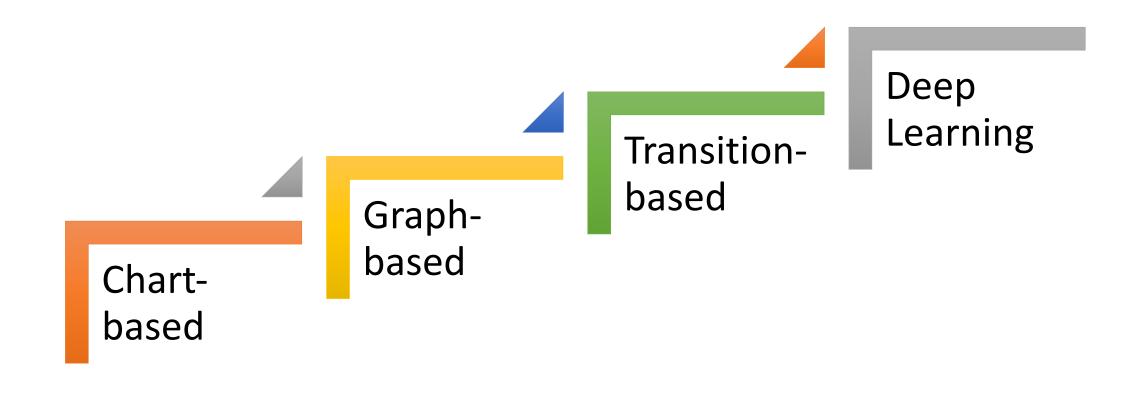
CoNLL 2017 Shared Task

- http://universaldependencies.org/conll17/
- Multilingual Parsing from Raw Text to Universal Dependencies
 - Tasks: Sentence Segmentation, Word Segmentation, POS Tagging, Parsing
 - Training: 45 languages, 64 treebanks
 - Test: 81 treebanks
- 113 Registration Teams
 - Universities: Stanford, CMU, UW, Cornell, Toronto, Cambridge, Tokyo, ...
 - Companies: IBM Research, Facebook, ...
 - China: CAS, Fudan, Shanghai Jiaotong, ...
- Results
 - □ 33 Submission Teams
 - □ Rank 1-3: Stanford, Cornell, Stuttgart
 - HIT Rank 4

Semantic Dependency Parsing

- We organized SemEval 2012 and 2016 Shared Tasks
 - https://www.cs.york.ac.uk/semeval-2012/task5.html
 - □ http://alt.qcri.org/semeval2016/task9/
 - Chinese Semantic Dependency Parsing
- SemEval 2014 and 2015
 - □ http://alt.qcri.org/semeval2014/task8/
 - □ http://alt.qcri.org/semeval2015/task18/
 - English Semantic Dependency Parsing

Algorithm



Less Features More Features Less Features

Graph-based Dependency Parsing

- ☐ Find the highest scoring tree from a complete dependency graph
- Maximum Spanning Tree (MST)
 - Some dynamic programming algorithms

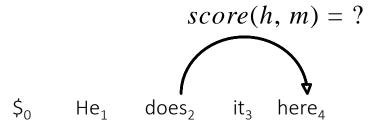
$$Y^* = \underset{Y \in \Phi(X)}{\operatorname{arg max}} score(X, Y)$$

How to Calculate the Score of a Tree

☐ The score of a tree is the sum of each arc

$$score(X,Y) = \sum_{(h,m)\in Y} score(X,h,m)$$

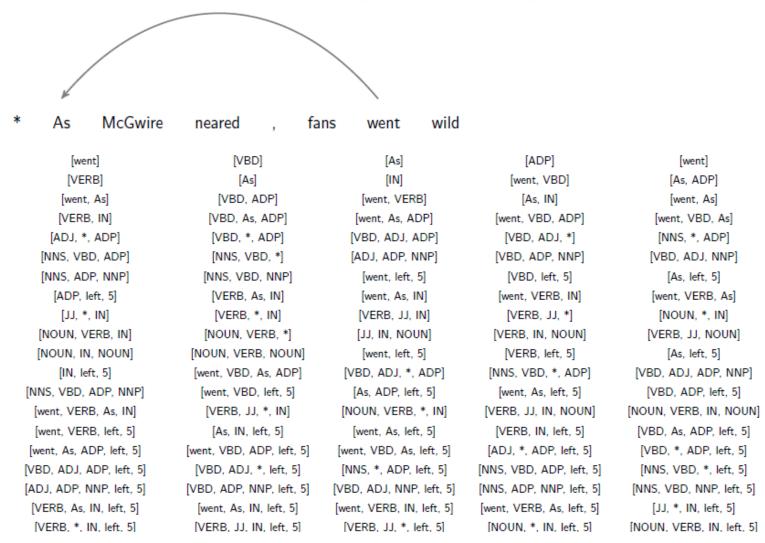
An arc is represented as a feature vector



☐ The score of the arc is dot product of weight vector by feature vector

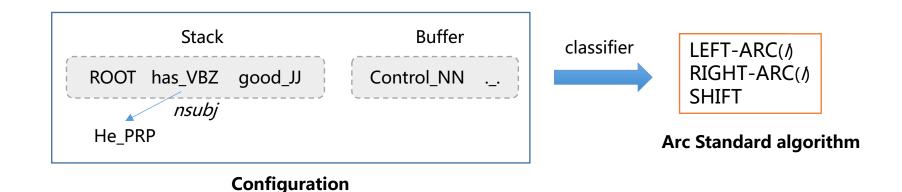
$$score(h, m) = \mathbf{w} \cdot \mathbf{f}(h, m)$$

Features for an Arc



Transition-based Dependency Parsing

- Greedily predict a transition action sequence from an initial parsing state to some terminal states
- ☐ State (configuration)
 - = Stack + Buffer + Dependency Arcs



Traditional Features

Stack Buffer

Configuration ROOT has_VBZ good_JJ Control_NN ._.

nsubj

He_PRP

from single words

 S_0wp ; S_0w ; S_0p ; N_0wp ; N_0w ; N_0p ; N_1wp ; N_1w ; N_1p ; N_2wp ; N_2w ; N_2p ;

from word pairs

 S_0wpN_0wp ; S_0wpN_0w ; S_0wN_0wp ; S_0wpN_0p ; S_0pN_0wp ; S_0wN_0w ; S_0pN_0p N_0pN_1p

from three words

 $N_0pN_1pN_2p$; $S_0pN_0pN_1p$; $S_{0h}pS_0pN_0p$; $S_0pS_{0l}pN_0p$; $S_0pS_{0r}pN_0p$; $S_0pN_0pN_0p$

Table 1: Baseline feature templates. w – word; p – POS-tag.

distance

Need Tedious Feature Engineering!

Feature

- Binary
- Sparse
- High-dimensional

0 0 1 0 1 ... 0 1 0 0

Feature templates: a combination of elements from the configuration.

• For example: (Zhang and Nivre, 2011): 72 feature templates

 S_0wv_r ; S_0pv_r ; S_0wv_l ; S_0pv_l ; N_0wv_l ; N_0pv_l ;

unigrams

 $S_{0h}w; S_{0h}p; S_{0l}; S_{0l}w; S_{0l}p; S_{0l}l;$ $S_{0r}w; S_{0r}p; S_{0r}l; N_{0l}w; N_{0l}p; N_{0l}l;$

third-order

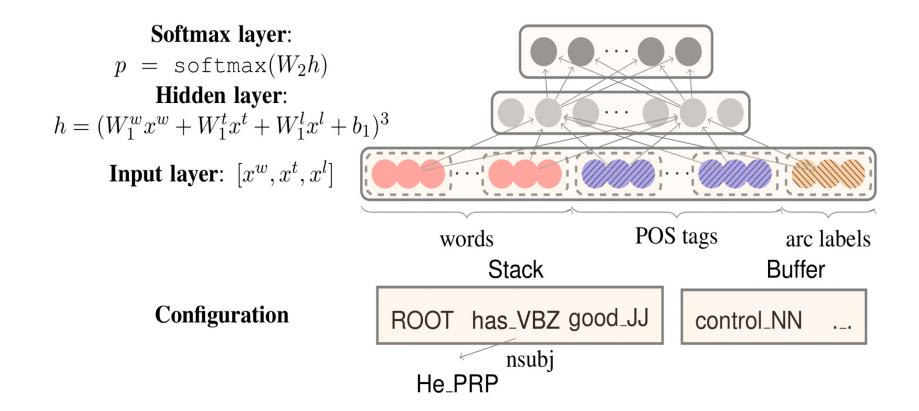
 $S_{0h2}w; S_{0h2}p; S_{0h}l; S_{0l2}w; S_{0l2}p; S_{0l2}l;$ $S_{0r2}w; S_{0r2}p; S_{0r2}l; N_{0l2}w; N_{0l2}p; N_{0l2}l;$ $S_{0p}S_{0l}pS_{0l2}p; S_{0p}S_{0r}pS_{0r2}p;$ $S_{0p}S_{0h}pS_{0h2}p; N_{0p}N_{0l}pN_{0l2}p;$

label set

 S_0ws_r ; S_0ps_r ; S_0ws_l ; S_0ps_l ; N_0ws_l ; N_0ps_l ;

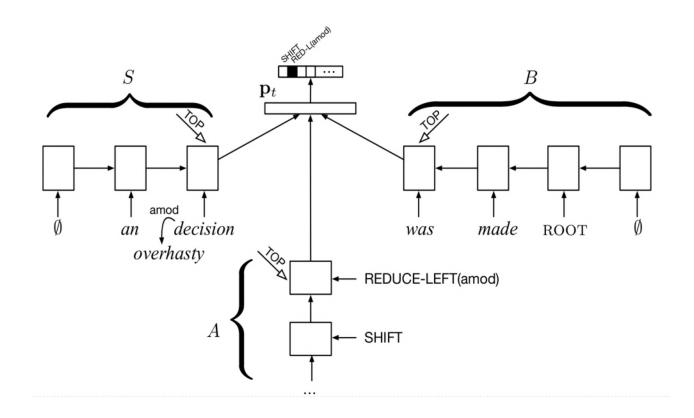
Table 2: New feature templates. w – word; p – POS-tag; v_l , v_r – valency; l – dependency label, s_l , s_r – labelset.

Neural Network Parser



[Chen, D., & Manning, C. D. (2014). A Fast and Accurate Dependency Parser using Neural Network. EMNLP.]

Stack-LSTM Parser



[Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack Long Short-Term Memory. ACL]

Sentence-level Log Likelihood

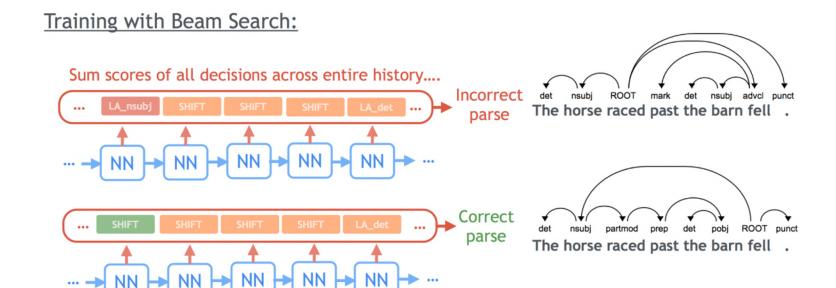
- Global Normalization
- Training with Beam Search

$$p(y_i \mid x, \theta) = \frac{e^{f(x, \theta)_i}}{\sum_{y_j \in GEN(x)} e^{f(x, \theta)_j}}$$

$$f(x, \theta)_i = \sum_{a_k \in y_i} o(x, y_i, k, a_k)$$

[Zhou, H., Zhang, Y., Huang, S., & Chen, J. A Neural Probabilistic Structured-Prediction Model for Transition-Based Dependency Parsing. ACL 2015]

SyntaxNet: Google

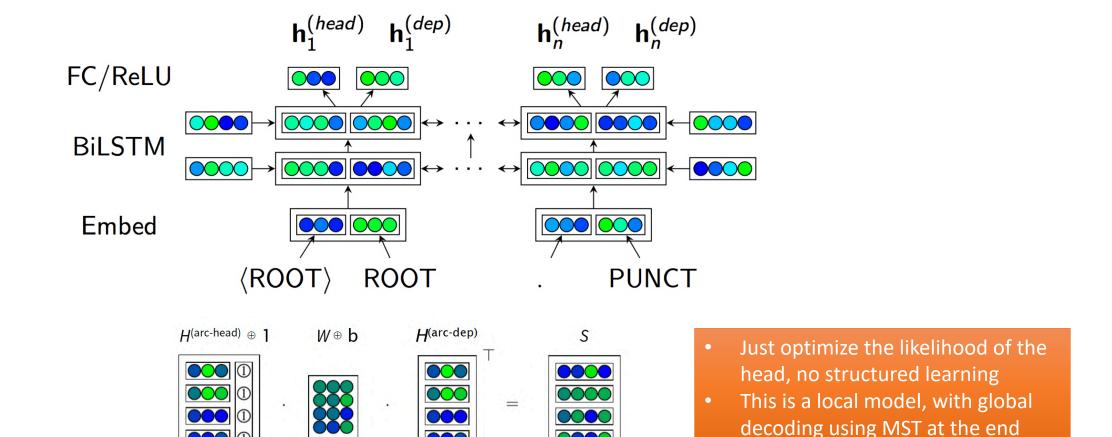


Update: maximize P(correct parse) relative to the set of alternatives

Globally Normalized SyntaxNet Architecture (Overview)

[Andor, D., Alberti, Chris., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., & Collins, M. Globally Normalized Transition-Based Neural Networks. ACL 2016]

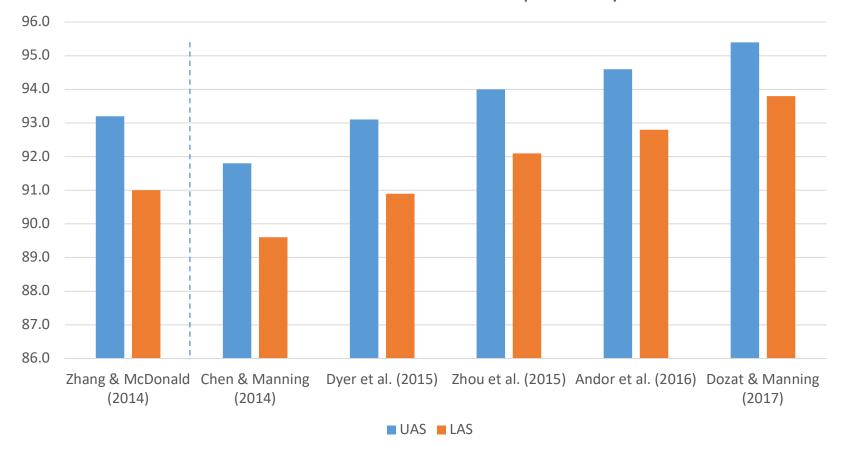
Deep Biaffine Attention



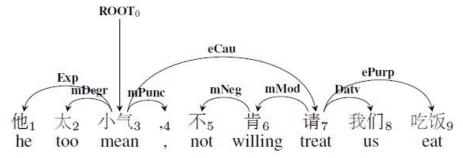
[Timothy Dozat and Christopher D. Manning. Deep Biaffine Attention for Neural Dependency Parsing. ICLR 2017.]

Changes of Performance

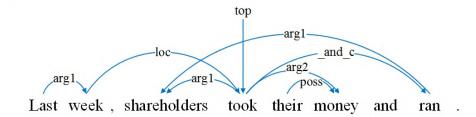
Test on PTB with Stanford Dependency

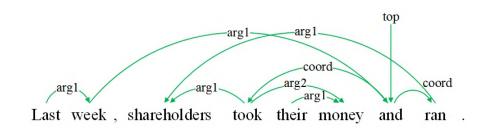


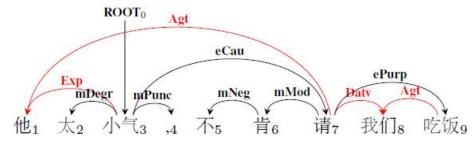
Semantic Dependency Graph Parser



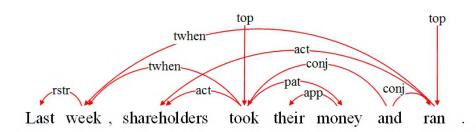
SemEval 2012 Task 5 : Chinese Semantic Dependency (Tree)







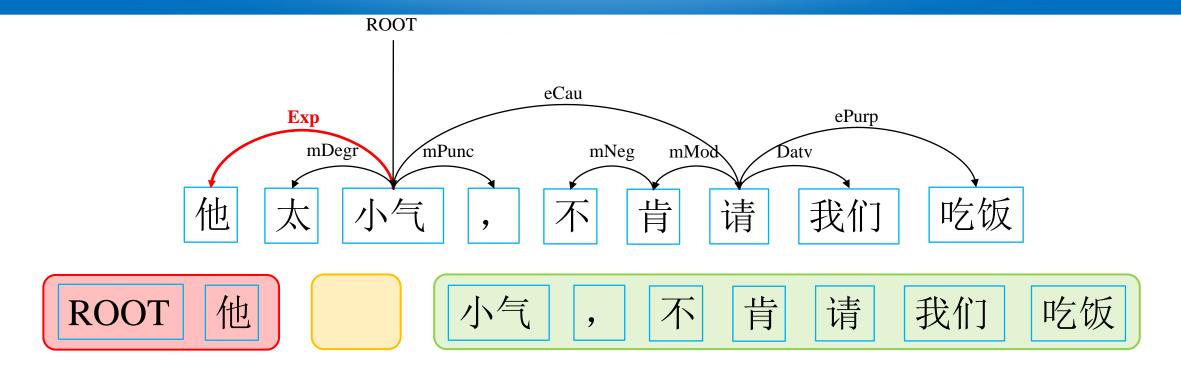
SemEval 2016 Task 9 : Chinese Semantic Dependency (Graph)



SemEval 2015 Task 18: Broad-Coverage Semantic Dependency (Graph)

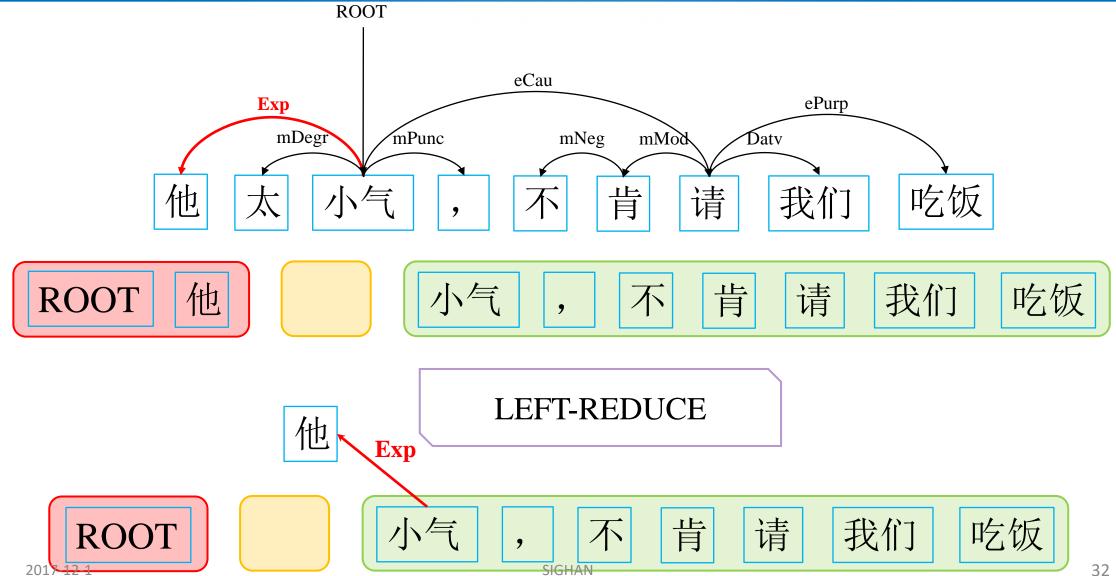
[Yuxuan Wang, Wanxiang Che, Jiang Guo and Ting Liu. A Neural Transition-Based Approach for Semantic Dependency Graph Parsing. AAAI 2018.]

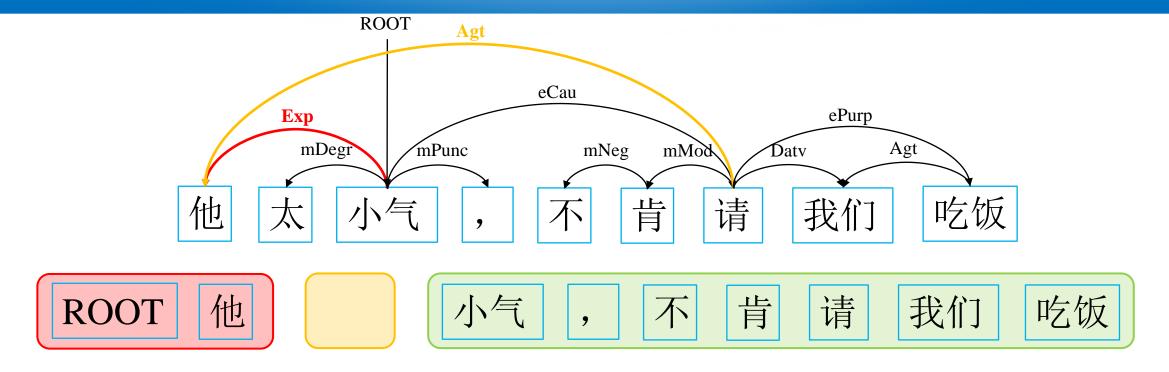
Transition System for Dependency Tree [Choi and McCallum (2013)]



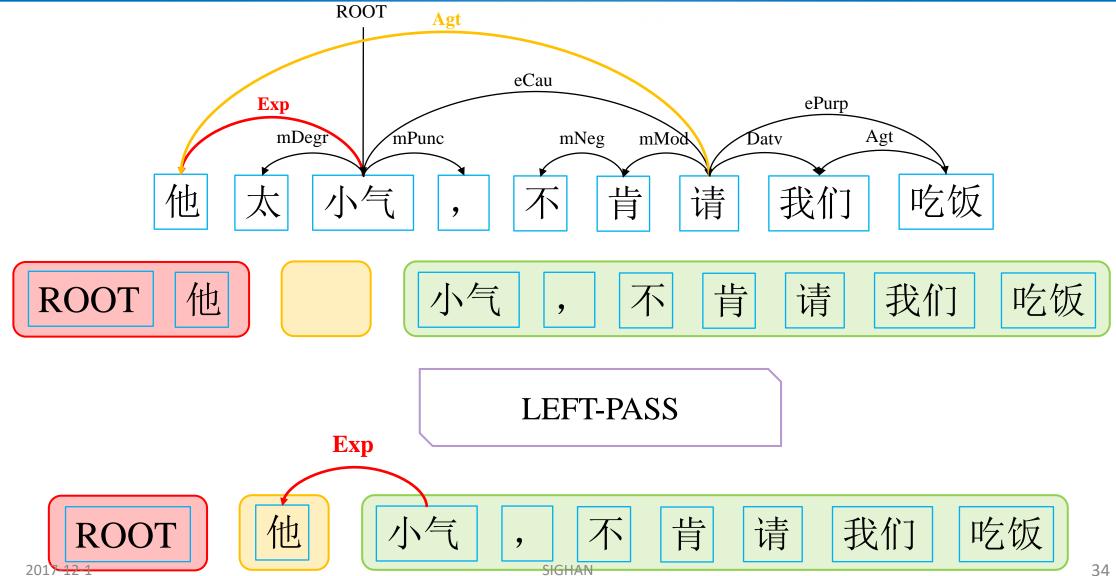
[Yuxuan Wang, Wanxiang Che, Jiang Guo and Ting Liu. A Neural Transition-Based Approach for Semantic Dependency Graph Parsing. AAAI 2018.]

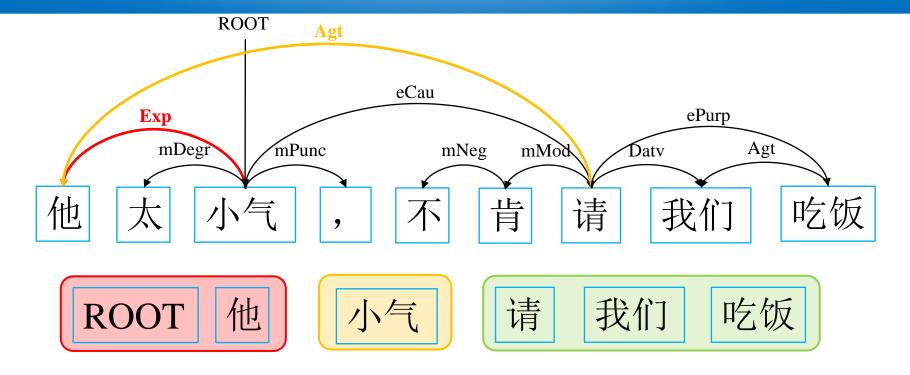
Transition System for Dependency Tree [Choi and McCallum (2013)]



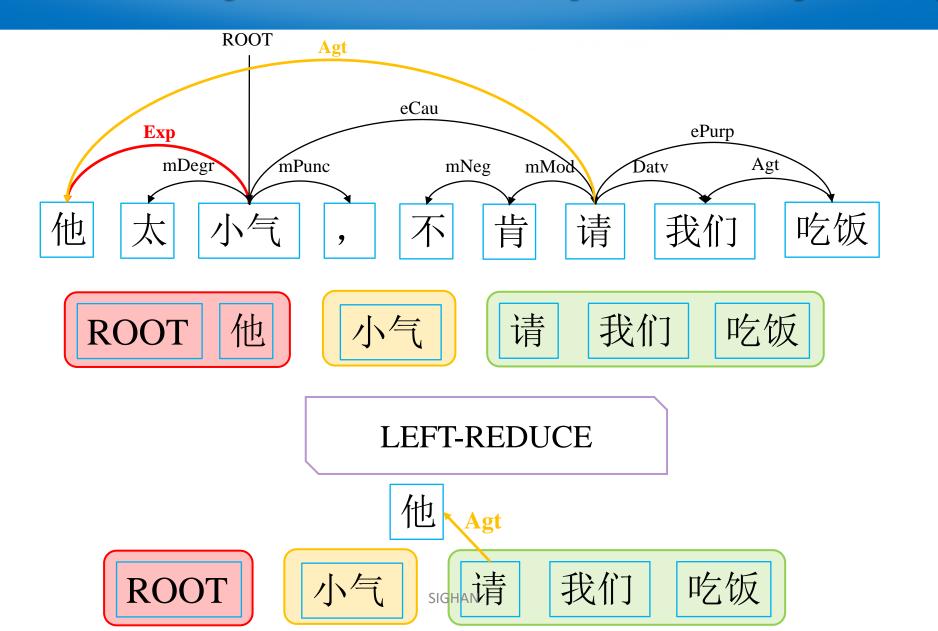


[Yuxuan Wang, Wanxiang Che, Jiang Guo and Ting Liu. A Neural Transition-Based Approach for Semantic Dependency Graph Parsing. AAAI 2018.]

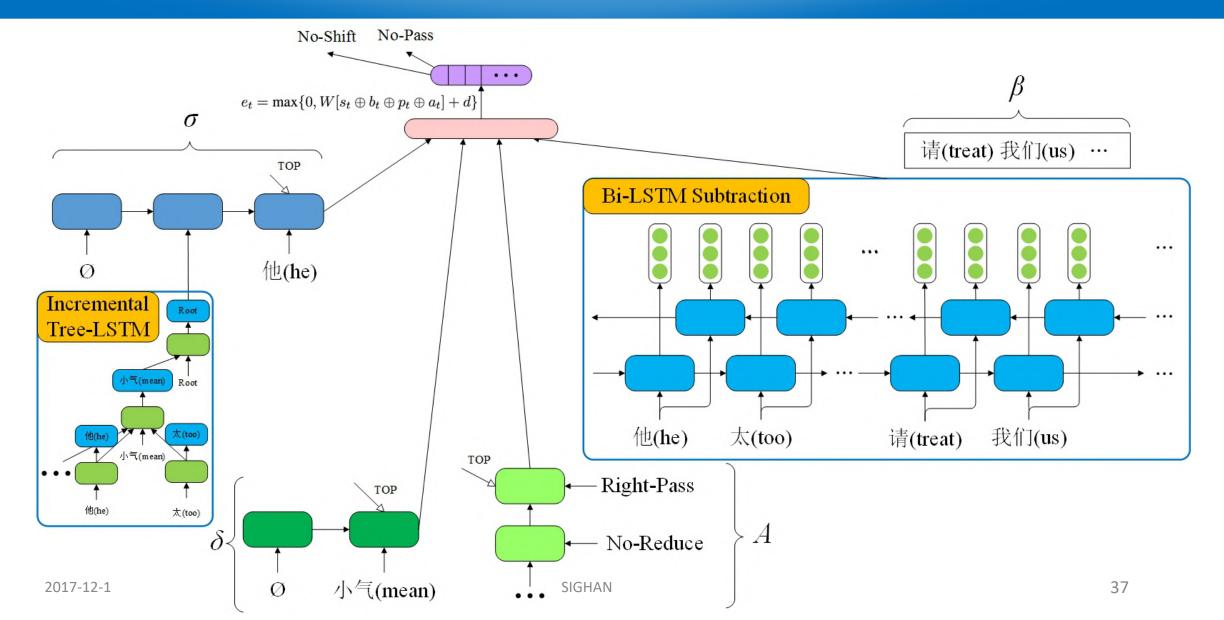




[Yuxuan Wang, Wanxiang Che, Jiang Guo and Ting Liu. A Neural Transition-Based Approach for Semantic Dependency Graph Parsing. AAAI 2018.]

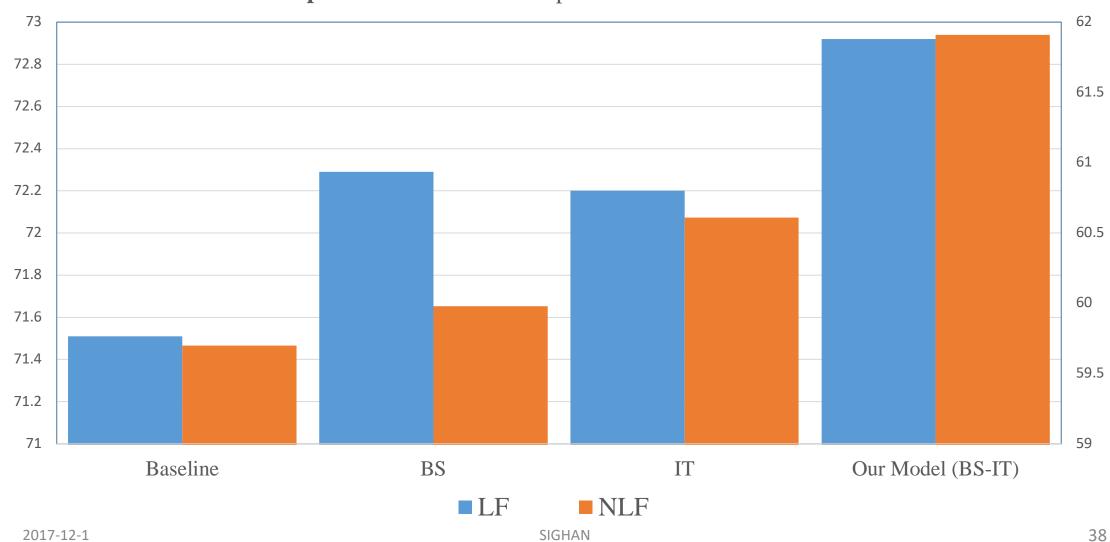


IT-BS Classifier



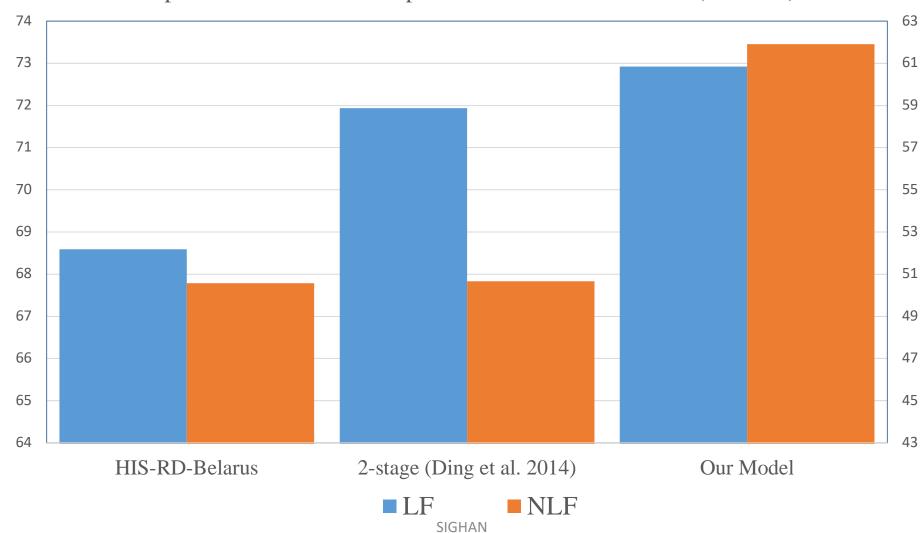
Experiments

Experiments on TEXT Corpus of SemEval 2016 Task 9

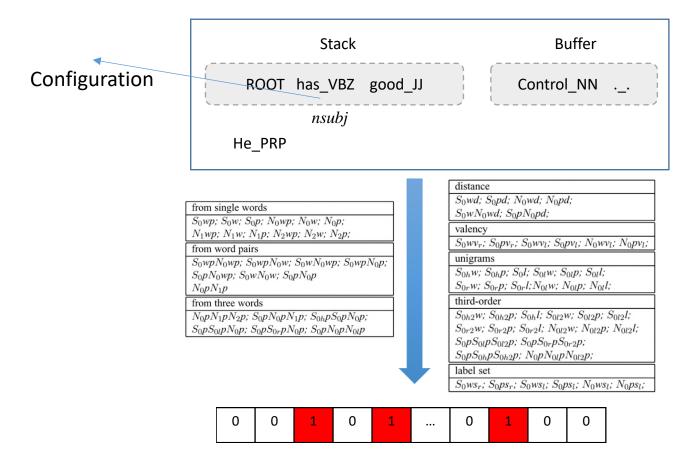


Experiments

Experiments on TEXT Corpus of SemEval 2016 Task 9 (Chinese)



DL for NLP: End-to-End Learning



S amod an decision overhasty

A SHIFT

SHIFT

SHIFT

Traditional Parser

Stack-LSTM Parser

Outline

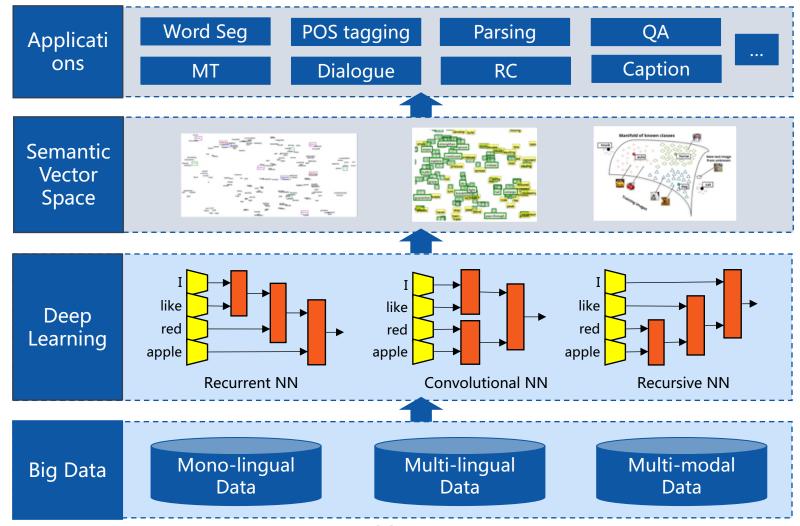
1. Syntactic and Semantic Parsing

2. Pseudo Data for Parsing

3. Applications of Parsing

4. Summary

DL for NLP: Representation Learning



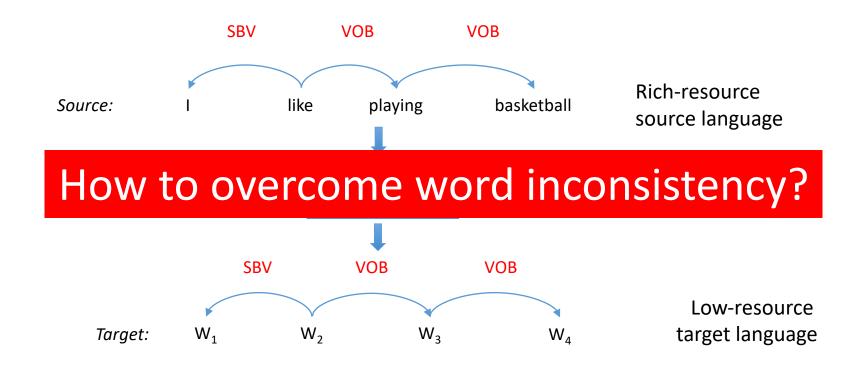
Pseudo Data for Parsing



2017-12-1 43

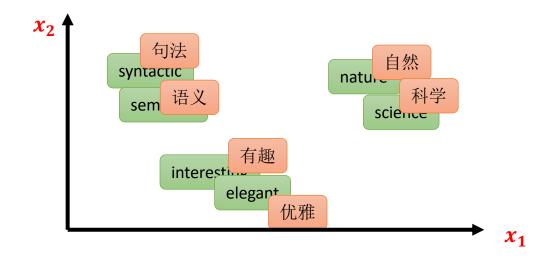
Cross-language Parser

□ Transfer the parser trained on source language(s) to parse a target language



Cross-language Parser

□ Learn bilingual word embeddings to overcome word inconsistency



Published papers: ACL 2015, AAAI 2016, JAIR 2016, CoNLL 2017

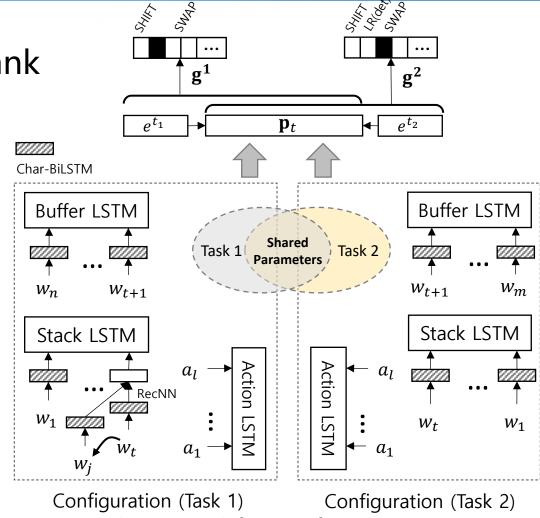
Deep Multi-Task Learning Architecture

Each task corresponds to a Treebank

- Multilingual universal
- Monolingual heterogeneous
- Multiple NLP tasks

Core Parameters

- □ LSTM(B), LSTM(S)
- □ LSTM(A)
- BiLSTM(chars)
- RecNN
- \square W_A, W_B, W_S
- \square $E_{pos}, E_{char}, E_{rel}, E_{act}$
- \Box e^t
- □ g



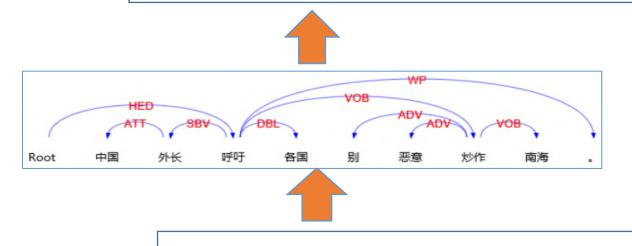
[Jiang Guo, Wanxiang Che, Haifeng Wang and Ting Liu. A Universal Framework for Transfer Parsing across Multi-typed Treebanks. Coling 2016]

Outline

- 1. Syntactic and Semantic Parsing
- 2. Pseudo Data for Parsing
- 3. Applications of Parsing
- 4. Summary

Shallow Learning

The final task, e.g., entity relation extraction



Sentence

Deep Learning

The final task, e.g., entity relation extraction End-to-End Root Sentence

2017-11-27 IJCNLP 2017 Tutorial 49

A Question

☐ Is Parsing or Structure Necessary?

	Bi-LSTM	Tree-LSTM
Stanford Sentiment TreeBank	49.8 / 50.7 (Segment)	50.4
Binary Sentiment Classification	79.0	77.4
Question-Answer Matching	56.4	55.8
Semantic Relationship Classification	75.2	76.7
Discourse Parsing	57.5	56.4

[Jiwei Li, Minh-Thang Luong, Dan Jurafsky and Eduard Hovy. When Are Tree Structures Necessary for Deep Learning of Representations? EMNLP 2015]

Language Technology Platform (LTP)

- □ http://ltp.ai
- □ Rich and accurate Chinese NLP toolkits
 - Chinese word segmentation,
 - POS tagging, NER, Dependency parsing,
 - Semantic role labeling, semantic dependency parsing
- Open source for research
- Evaluation
 - □ 1st place/13 at CoNLL 2009: syntactic and semantic dependency parsing
 - □ 4th place/33/113 at CoNLL 2017: multilingual syntactic dependency parsing

LTP Demo

LTP-Cloud Service

- http://www.ltp-cloud.com/
- Advantages
 - ☐ Installation free, saving hardware, easy usage, cross-platform, cross-programming languages, update in time

LTP-Cloud API Example

```
import urllib2, urllib, sys

uri_base = http://api.ltp-cloud.com/analysis/?

api_key = "YourAPIKey"

text = urllib.quote("我爱北京天安门")

format = sys.argv[1]

url = "{}api_key={}&text={}&format={}&pattern=all".format(uri_base, api_key, text, format)

print urllib2.urlopen(url).read()
```

■ More Documents

https://github.com/HIT-SCIR/ltp-cloud-api-tutorial

How to Use Tree or Graph Structures?

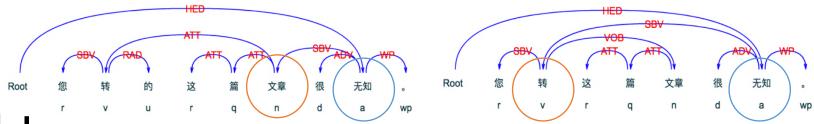
- As Information Extraction Rules
- As Input Features
- ☐ As Input Structures
- As Structured Prediction

How to Use Tree or Graph Structures?

- As Information Extraction Rules
- ☐ As Input Features
- ☐ As Input Structures
- As Structured Prediction

As Information Extraction Rules

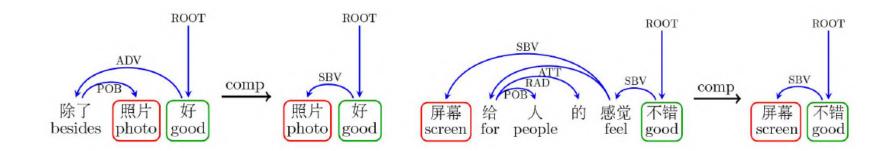
- ■For example
 - Polarity-target pair extraction



- Problem
 - ☐ The extraction rules are very complex
 - ☐ The parsing results are inexact

As Information Extraction Rules

- □ Sentence compression based PT pair extraction
 - Simplify the extraction rules
 - □ Improve the parsing accuracy



- Use a sequence labeling model to compress sentences
- □ The PT pair extraction performance improves 3%

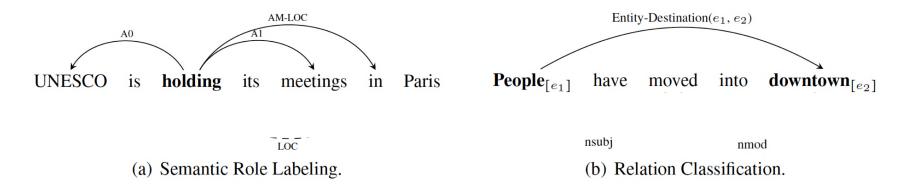
[Wanxiang Che, Yanyan Zhao, Honglei Guo, Zhong Su, Ting Liu. Sentence Compression for Aspect-Based Sentiment Analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2015, 23(12)]

How to Use Tree or Graph Structures?

- As Information Extraction Rules
- As Input Features
- ☐ As Input Structures
- As Structured Prediction

Path Features

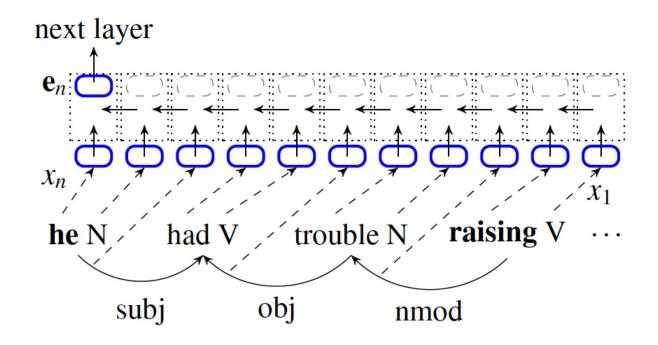
- For Example
 - □ Semantic Role Labeling (SRL), Relation Extraction (RC)



- The parsing path features are very important
 - □ People <--> downtown: nsubj ← moved → nmod
- □ But they are difficult to be designed and very sparse

Path Features

- ☐ Use LSTMs to represent paths
- □ All of word, POS tags and relations can be inputted

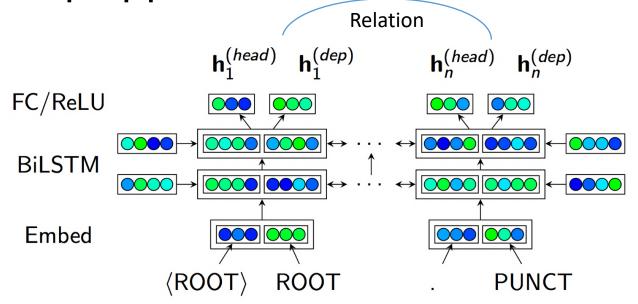


[Michael Roth and Mirella Lapata. Neural Semantic Role Labeling with Dependency Path Embeddings. ACL 2016]

Hidden Units of Parsing as Features

□ The hidden units for parsing include **soft** syntactic information

□ These can help applications, such as relation extraction



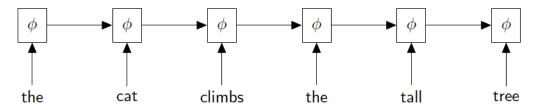
Meishan Zhang, Yue Zhang and Guohong Fu. End-to-End Neural Relation Extraction with Global Optimization. EMNLP 2017.

How to Use Tree or Graph Structures?

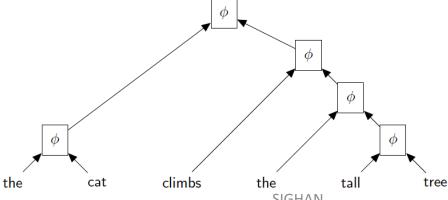
- ☐ As Information Extraction Rules
- As Input Features
- ☐ As Input Structures
- As Structured Prediction

Recurrent vs. Recursive Neural Networks

- Recurrent Neural Networks
 - Composing sequentially



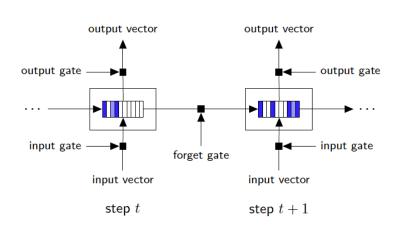
- Recursive Neural Networks
 - Use parse trees as input structures
 - Composing according to parsing structures



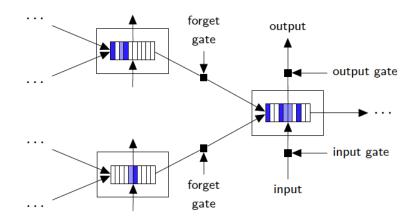
Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng and Christopher D. Manning. Parsing Natural Scenes And Natural Language With Recursive Neural Networks. ICML 2011.

Tree-LSTMs

Standard LSTM

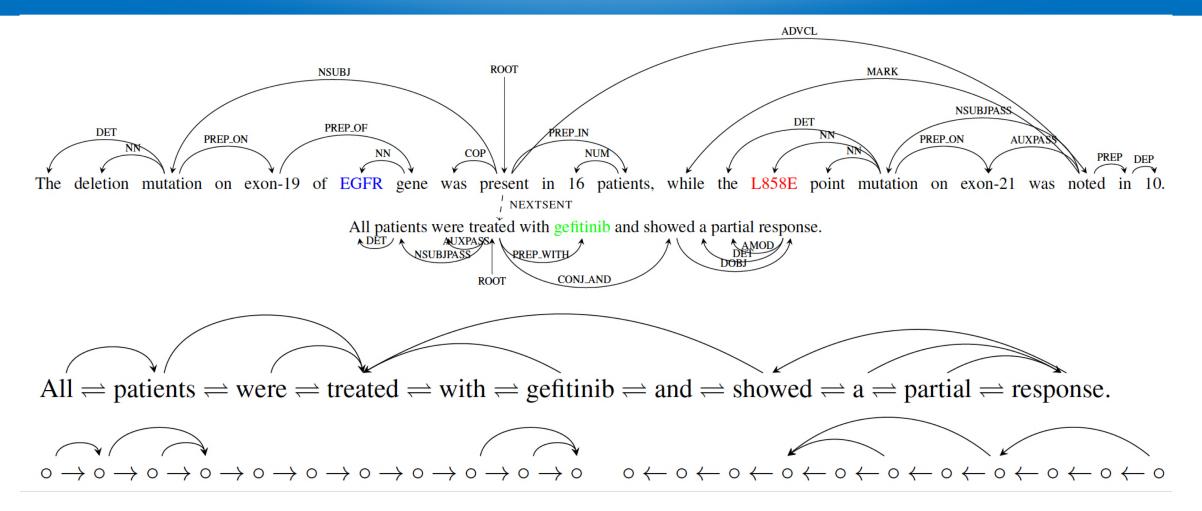


Tree-LSTM



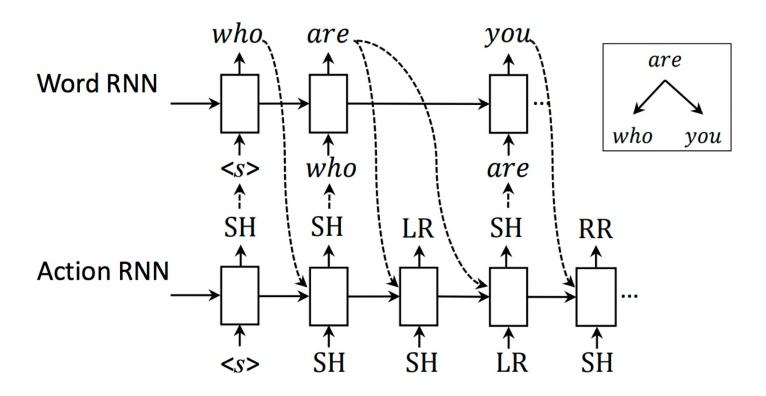
- Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. ACL 2015.
- Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-term memory over recursive structures.
 ICML 2015.

Graph-LSTMs



Peng, N., Poon, H., Quirk, C., Toutanova, K., & Yih, W. 2017 Apr 5. Cross-Sentence N-ary Relation Extraction with **Graph LSTMs**. Transactions of the Association for Computational Linguistics.

Neural Machine Translation



Dependency Decoder

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li and Ming Zhou. Sequence-to-Dependency Neural Machine Translation. ACL 2017.

2017-11-27 IJCNLP 2017 Tutorial 67

How to Use Tree or Graph Structures?

- ☐ As Information Extraction Rules
- ☐ As Input Features
- ☐ As Input Structures
- As Structured Prediction

Disfluency Detection

Disfluency detection for speech recognition

I want a flight [
$$\underbrace{to Boston}_{RM} + \underbrace{\{um\}}_{IM} \underbrace{to Denver}_{RP}$$
]

- □ Transition System < O, S, B, A>
 - \square output (O): represent the words that have been labeled as fluent
 - \square stack (S): represent the partially constructed disfluency chunk
 - □ buffer(B): represent the sentences that have not yet been processed
 - □ action (A): represent the complete history of actions taken by the transition system
 - OUT: which moves the first word in the buffer to the output and clears out the stack if it is not empty
 - □ DEL: which moves the first word in the *buffer* to the *stack*

[Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan Zhang and Ting Liu. Transition-Based Disfluency Detection using LSTMs. EMNLP 2017]

Outline

- 1. Syntactic and Semantic Parsing
- 2. Pseudo Data for Parsing
- 3. Applications of Parsing
- 4. Summary

Summary

- Syntactic and semantic parsing is one of the core task of NLP
- Recent advances
 - Grammar: universal dependency, semantic dependency graph
 - □ Data: large (pseudo) labeled data (multi-lingual/task, heterogeneous)
 - Algorithm: deep learning for semantic dependency graph parsing
- More and more applications
 - As Information Extraction Rules
 - As Input Features
 - As Input Structures
 - As Structured Prediction

Thanks!

http://ir.hit.edu.cn/~car/

