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Part 1: Structured Prediction




Part 1.1: Fundamental NLP Tasks




Need Structures?

. IR A PAR The article you retweeted is ignorant.
E‘ZélJ E’E?E%’fﬂ,ﬂ%

EET TR R X ERTTH
— 1T HF, E#. You are ignorant to retweet the article.

' IR TR
FIERPBREIXERITAL

OParsing proposes the (syntactic or semantic)
relations between words

OThese relations are important for many applications



Fundamental NLP Pipeline
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Word Segmentation

OWords are fundamental semantic units
OChinese has no obvious word boundaries

OWord segmentation
O Split Chinese character sequence into words

OAmbiguities in word segmentation

OE.g. F—IBFHXT
Omss—/ 8/ F/ X/ 7T
O/ —8F/ X/ 7
O/ —8/ F/ X/ 7
O/ms—/8F/ X/ 7




Part-of-speech (POS) Tagging

OA POS is a category of words which have
similar grammatical properties
O E.g. noun, verb, adjective

OPOS tagging

O Marking up a word in a text as a particular POS | -
based on both its definition and its context

OAmbiguities in POS Tagging
OTime flies like an arrow.
O FIAR TEA vs. ZRETIR




Named Entity Recognition (NER)

0 Named Entities

O Persons, locations, organizations, expressions of times,
quantities, monetary values, percentages, etc.

O Locating and classifying named entities in text into pre-
defined categories

O Ambiguities in NER

.. ANBEGH) ?
Kerry to visit Jordan, Israel Jordan <
Palestinian peace on agenda. wawe) ?




Syntactic Parsing

OAnalyzing a natural language string conforming to
the rules of a formal grammar, emphasizing subject,
predicate, object, etc.

I:IConstituency and Dependency Parsing

nmod sbj ‘ nmod |nmod ‘ nmod

Economlc news had Ilttle effect on fmanc|a| markets . Economlc news had little effect on financial markets !

NN VBD JJ NN IN NNS




Dependency Parsing

OA dependency tree is a tree structure composed of
the input words and satisfies a few constraints:

OSingle-head
OConnected

OAcyclic

http://Itp.ai/demo.html



http://ltp.ai/demo.html

Semantic Role Labeling

ORecognizing predicates and corresponding
arguments

TEMP HITTER THING HIT  INSTRUMENT
[\ r—— - R ~
Yesterday, Kristina hit Scott with a baseball

Scott was hit by Kristina yesterday with a baseball
Yesterday, Scott was hit with a baseball by Kristina
With a baseball, Kristina hit Scott yesterday

Yesterday Scott was hit by Kristina with a baseball

Kristina hit Scott with a baseball yesterday

Example from (Yih & Toutanova, 2006)



Semantic Role Labeling

OAnswer “Who did what to whom when and
where”

OQuestion Answering
O Yesterday time ,» Mary puyer bought a shirt poughi thing from Tom cejer
O Whom pyyer did Tom gejier sell @ shirt pougni thing 0, yesterday time

OInformation Extraction



Semantic Dependency Graph
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Last week , shareholders took their money and ran

top
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Last week . sharcholders took their money and ran

Last week , sharcholders took their money and ran

SemEval 2015 Task 18: Broad-Coverage
Semantic Dependency (Graph)



Q;}J;A%stract Meaning Representation (AMR)

The boy wants the girl to believe him.

The boy wants to be believed by the girl.

The boy has a desire to be believed by the girl.
The boy’s desire is for the girl to believe him.
The boy is desirous of the girl believing him.

ARG1
instance

; ARG1
instance

believe-01
want-01

instance

instance /

boy

http://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf


http://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf
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Part 1.2: Structured Prediction




Structured Prediction

OPredicting structured objects, rather than
scalar discrete or real values

OOutputs are influenced each other

OThree categories
OSequence segmentation
OSequence labeling / Tagging
OParsing



Sequence Segmentation

OBreak a sequence into contiguous parts

OFor example: Word Segmentation
Olnput
O F=F—BFNXT
OOutput
o=<F—/ 8/ FH/ X/ T/
OMore examples:

OSentence segmentation (a post-processing stage for
speech transcription)

OParagraph segmentation



Sequence Labeling/Tagging

OGiven an input sequence, produce a label sequence
of equal length

COEach label is drawn from a small finite set
CLabels are influenced each other

OFor example: POS tagging
Olnput

0 Profits soared at Boeing Co., easily topping forecasts on Wall Street, ...

OOutput
O Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV ...



O Input

O Profits soared at Boeing Co., easily topping forecasts on Wall
Street, ...

O Output

O Profits soared at [Boeing Co. orgl, easily topping forecasts on
[WaII Street LOC],

O Alternative Output (Tagging)

O Profits/O soared/O at/O Boeing/B-ORG Co./I-ORG ,/O easily/O
topping/O forecasts/O on/O Wall/B-LOC Street/I-LOC ,/O ...

O Where
O B: Begin of entity XXX; I: Inside of entity XXX; O: Others



Word Segmentation

Olnput

OfF—BFHXT
OOutput

O F=sF—/ 18/ F/ X/ T/
OAlternative Output (Tagging)

O 7/B 5§/1 —/148/B F/B /1 %/B T /B
OWhere

O B: Begin of a word; I: Inside of a word



Semantic Role Labeling

Olnput
O Yesterday, Mary bought a shirt from Tom

OOutput

O [Yesterday timel, [Mary puye] bought/pred [a shirt pougnt thing]
from [Tom gejie/]

OAlternative Output (Tagging)

O Yesterday/B-time ,/O Mary/B-buyer bought/pred a/B-
bought thing shirt/I-bought thing from/O Tom/B-seller

OWhere
O B: Begin of an arg; I: Inside of an arg; O: Others



Parsing Algorithms

OAIl kinds of algorithms converting sentences to
tree or graph structures

OConstituency and Dependency Parsing

N

/\ /\
NN VBD JJ

Economlc news had httle effect on fmancnal markets .

P

obj pc
nmod sbj

sans s

Economic news had little effect on financial markets !
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Part 1: Summary

CONLP Tasks

O Word segmentation, POS tagging, named entity
recognition

O Constituent/dependency parsing

O Semantic Role Labeling, Semantic (graph) dependency
parsing

O Abstract Meaning Representation (AMR)
O Combinatory Categorial Grammars (CCG)

OStructured Prediction
0 Sequence segmentation
O Sequence labeling / Tagging
O Parsing



Part 2: Graph-based Methods




Part 2.1: Graph-based Sequence Labeling




=%
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Features of POS Tagging with CRF

OAssume only two feature templates

Otag bigrams Vi1 Q
Oword/tag pairs ;

(1if <y;_1,y; >= <nv>

=
f100 \ 0 otherwise
Jro1 = ;1 if x; is ended with “ing” and y; = v
0 \ 0 otherwise



CRF Decoding

arg mdx ZW f(xln YirYi— 1)

Y[1: Tl]EGEN(x[ ] —1

where GEN(x[1.,7) Is all possible tag sequences

ODynamic Programming Algorithm
OViterbi Algorithm



Viterbi Algorithm

O Define a dynamic programming table
O n(i,y) = maximum score of a tag sequence ending in tag y at position /

O Recursive definition: n(i,y) = max (mGi = 1,0 + W (g v, t))

Time flies like an arrow



OWindow Approach
O Tag one word at a time

O Feed a fixed-size window of text
around each word to tag

COFeatures

O Words, POS tags, Suffix,
Cascading, ...

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural

Language Processing (Almost) from Scratch. J. Mach. Learn.

Res. 12, 2493-2537.

Input Window
word of interest

Text cat sat on the mat
Feature 1 w% w% ... w}v
Feature K wf{ wé{ wﬁ

9
v

Lookup Table

LTW“\ADDDDD

LTWK N~ D D
conc xt
Linear

M xo A~ | |

HardTanh

<da



Sentence-Level Log-Likelihood

O Considering dependencies between tags in a sentence

O Conditional likelihood by normalizing all possible paths
(CRF)

O Sentence score for one tag path
log p([Wl{ | [=I{, 6) = s(l]{, [yl{ , 6) — logadd s(l=lf, [j]1, 6)
vljl{
7

sl 6T, 6) =" (4,_m, + (I, il ¢, 0))
t=1
O where Ay is a transition score for jumping from tag /to /

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch. J. Mach. Learn. Res. 12 (November 2011), 2493-2537.



Sentence-Level Log-Likelihood

ODecoding: finding the max scored path
OViterbi algorithm

The cat sat mat

Arg0 @ (& &)

Arg1 5] /
o A2 :_N/-

Verb/ @ @ @

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch. J. Mach. Learn. Res. 12 (November 2011), 2493-2537.




Results

Approach POS | Chunking | NER | SRL

(PWA) (F1) (F1) | (F1)
Benchmark Systems | 97.24 94.29 89.31 | 77.92
NN+WLL 96.31 89.13 79.53 | 55.40
NN+SLL 96.37 90.33 81.47 | 70.99

OSLL helps, but fair performance for POS

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch. J. Mach. Learn. Res. 12 (November 2011), 2493-2537.



Recurrent Neural Networks (RNNs)

OCondition the neural network on all previous inputs
ORAM requirement only scales with number of inputs

hy.4 hy

y
‘ ‘ht+1
w_ | ® w_|®]| |
@ @
@

(eo00) (0000) (0000)

Xt-1 Xt Xt11

w1

—_—>
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Recurrent Neural Networks (RNNs)

OAt a single time step ¢
D ht — tanh(Wlht_l + szt)
09, = softmax(W3h,)




TrainingERNNsbBskhard

O Ideally inputs from many time steps ago can modify output y
O For example, with 2 time steps

Vi1 d\yt ﬁ\y t+1
h.4 h; Pi.q

—(0 000 )—

(e000) (0000) (0000)

Xt-1 Xt Xt+1




ackPropagation Through Time (BPTT)

O Total error is the sum of each error at time step ¢
9E _ y1 9B

-~ ow 2i=1 ow

aEt _ aEt ayt

= ows3 9y, w3

is easy to be calculated

E)Et _ E)Et ayt aht

owl Ay, dhy oWl

O Because h; = tanh(Wlh,_; + W2x,) depends on h;_,, which
depends on W and h;_,, and so on.

aEt aEt ayt aht ahk

bt _ gt
OSo w1l Lk=1 dy; Oh, Ohy, OW1

O But to calculate is hard (also for W?2)




ackPropagation Through Time (BPTT)

OUse the same as the backpropagation algorithm as
we use in deep feedforward NN, but summing up
the gradients for w1

OBPTT is just a fancy name for standard
backpropagation on an unrolled RNN
OE,
6W1 Zt 1wt
6Et Z aEt ayt aht ahk
awl k=19y, 9h, Ohy OWL




The vanishing gradient problem

0E O0Et 0y¢|0ht|0h
t= Yher g by = tanh(Wh_y + W2x,)

ow By Ohyldh
dh : Oh . ’
Da_hzt — §'=k+1ahjil = [I=x+, W'diag[tanh'(---)]
oh
O |52 | < viw il < va,
O where y is bound ||diag[tanh’(---)]|l, A,is the largest singular
value of W'
oh ~
o2 < Gant*

O This can become very small or very large quickly >
Vanishing or exploding gradient

O Trick for exploding gradient: clipping trick (set a threshold)



A “Solution”

Olntuition
OEnsure yA1; = 1 > to prevent vanishing gradients

OSo ...
OProper initialization of the W

OTo use ReLU instead of tanh or sigmoid activation
functions



A better “solution”

O Recall the original transition equation
O h, = tanh(Wth,_; + W?x,)

O We can instead update the state additively
O u, = tanh(Wth,_; + W2x,)
Oh, =h,{+u

athen 2] =1+

0 On the other hand
O ht = ht—]_ + Uy = ht—Z + Up—1 + Up = -+

aut

>1
Oht—q




A better “solution” (cont.)

OlInterpolate between old state and new state ( “choosing
to forget” )

D ft == O-(fot + Ufht_l)
Oh =f Oheq+ (1_ft.) O u,
OIntroduce a separate input gate i,
Oi,=c(Wix, +U'h;_,)
Ohe=fiOher+i Ou .
O Selectively expose memory cell ¢, with an output gate o,
O Ot = O-(Woxt + Uoht_]_)
Oca=0c1+iiOu
O hy = o, O tanh(c;)



Long Short-Term Memory (LSTM)

OHochreiter & Schmidhuber, 1997
OLSTM = additive updates + gating

up = tanh (Why—1 + Vay)

fr = sigmoid (W rhy—1 + Vi)

i = sigmoid (W;hi—1 + Viay) @
o; = sigmoid (Wohi—1 + Voxy)

et =ft Oc1+ i Ouy

h: = o ® tanh(¢;)

yr = Uhy




OBidirectional RNN » Deep Bidirectional
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Bi-LSTM-CRF

Algorithm 1 Bidirectional LSTM CRF model

B-ORG 0 B-MISC @ training procedure

1: for each epoch do

2:  for each batch do
3: 1) bidirectional LSTM-CRF model forward pass:
4: forward pass for forward state LSTM
5: forward pass for backward state LSTM
6: 2) CREF layer forward and backward pass
T 3) bidirectional LSTM-CRF model backward pass:
8: backward pass for forward state LSTM
% backward pass for backward state LSTM
10: 4) update parameters
11:  end for
12: end for

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991, 2015.



Results

Chunking NER

POS | CoNLL2000 | CoNLL2003

Conv-CRF (Collobert et al., 2011) | 96.37 90.33 81.47

LSTM 97.10 02.88 79.82

BI-LSTM 97.30 03.64 81.11

Random | CRF 97.30 93.69 83.02

LSTM-CRF 97.45 93.80 84.10

BI-LSTM-CRF 97.43 94.13 84.26
Conv-CRF (Collobert et al., 2011) | 97.29 94.32 88.67 (89.59)

LSTM 97.29 02.99 83.74

BI-LSTM 97.40 03.92 85.17

Senna CRF 97.45 03.83 86.13

LSTM-CRF 97.54 94.27 88.36
BI-LSTM-CRF 97.55 94.46 88.83 (90.10)

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991, 2015.



BI-LSTM-CRF for SRL

| CRF (Output) |

| Hidden |

OEnd-to-end tagging r

08 layer bi-directional L L)

ONo parsing features | F\tﬂ\@

| Hidden LSTM Reverse : L-H Layer
OFeatures e e i
| Hidden —] lST@

DArgument rmm;}m

DPredicate [A [record][date J[ has J[ n't J[been|[ set [ . |

. - aEe e Sentence
OPredicate-context
ORegion-mark

Figure 2: DB-LSTM network.Shadow part denote
the predicate context within length 1.

Jie Zhou and Wei Xu. (2015). End-to-end learning of semantic role labeling using recurrent neural
networks. ACL.



Jie Zhou and Wei Xu. (2015). End-to-end learning of semantic role labeling using recurrent neural

networks. ACL.
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Results
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Jie Zhou and Wei Xu. (2015). End-to-end learning of semantic role labeling using recurrent neural
networks. ACL.



Deep SRL

O A deep highway BiLSTM architecture with constraints
O 8 BILSTM layers (4 forward LSTMs and 4 reversed LSTMs)

P(Barco) P(larco) P(By) P(Barci)

LSTM

Word & e00e 0000
Predicate The 0 cats 0 love 1 hats 0

Luheng He, Kenton Lee, Mike Lewis and Luke Zettlemoyer. Deep Semantic Role Labeling: What
Works and What’s Next. ACL 2017.



Results

CONew state-of-the-art results

Development WSJ Test Brown Test Combined
Method P R F1 Comp. P R F1 Comp. P R F1 Comp. F1
Ours (PoE) 83.1 824 827 641 850 843 846 665 749 724 73.6 465 83.2
Ours 81.6 816 81.6 623 83.1 830 831 643 729 714 721 448 81.6
Zhou 791 794 79.6 829 828 828 70.7 68.2 694 81.1

FitzGerald (Struct.,PoE) 812 76.7 789 55.1 825 782 803 573 745 700 722 413 -
Tackstrom (Struct.) 812 762 786 544 823 776 799 560 743 68.6 713 398 -
Toutanova (Ensemble) - - 78.6 58.7 819 788 803 60.1 - - 68.8 40.8 -
Punyakanok (Ensemble) 80.1 74.8 774 50.7 823 768 794 538 734 629 678 323 71.9

Luheng He, Kenton Lee, Mike Lewis and Luke Zettlemoyer. Deep Semantic Role Labeling: What
Works and What’s Next. ACL 2017.



Part 2.2: Neural Semi-CRF




Segmentation Models

O Tagging models cannot extract segment information
OE.g. the length of a segment

O Some tagging problems can be naturally modeled into
segmentation task

O E.g. word segmentation, named entity recognition

SEIRTTE 5Eg » BR/ Ak /57 28

Pudong development and construction

Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, Ting Liu. (2016). Exploring Segment Representations
for Neural Segmentation Models. IJCAI.



Semi-CRF

OA solution
OSemi-Markov CRF [Sarawagi and Cohen, 2004]

OModeling segments directly

Op(s|x) = %exp{w . G(x,5)}

1 Yj

Feature extraction G(X,S) . @ @ @

Can we represent segments with vectors?

Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, Ting Liu. (2016). Exploring Segment Representations
for Neural Segmentation Models. IJCAI.



AT cx: .
“ «C€ompositional Segment Representation

J-1 Yj
g max-pooling |
: kiion ,_'-;,_.ﬁ i i)
| D000 0066
(b) SRNN (c) SCNN (d) SCONCATE

Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, Ting Liu. (2016). Exploring Segment Representations
for Neural Segmentation Models. IJCAI.



Results

NER CWS
CoNLLO3 CTB6 PKU MSR
model dev test dev test dev test dev test spd
NN-LABELER || 93.03 88.62 | 93.70 93.06 93.57 9299 93.22 93.79 | 3.30
baseline NN-CRF || 93.06 89.08 | 9433 9365 94.09 93.28 9381 94.17 | 2.72

SPARSE-CRF || 88.87 83.43 | 95.68 95.08 9585 95.06 96.09 96.54

SRNN || 9297 88.63 | 9456 9406 9486 9391 9438 0521 | 0.62
neural semi-CRF SCONCATE || 9296 89.07 | 9434 9396 9441 9357 9405 9453 | 1.08
SCNN || 91.53 87.68 | 87.82 87.51 79.64 80.75 8504 8579 | 1.46

Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, Ting Liu. (2016). Exploring Segment Representations
for Neural Segmentation Models. IJCAI.



Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, Ting Liu. (2016). Exploring Segment Representations

for Neural Segmentation Models. IJCAI.

model || CoNLLO3 | CTB6 PKU MSR
NN-LABELER 88.62 93.06 9299 93,79
NN-CRF 89.08 93.65 93.28 94.17
SPARSE-CRF 83.43 95.08 95.06 96.54
SRNN 88.63 94.06 9391 95.21
+SEMB-HETERO 89.59 9548 9560 97.39
+0.96 +1.42 +1.69 +2.18

R SCONCATE || 89.07 | 0396  93.57 9453
+SEMB-HETERO 89.77 0542 95.67 97.58
+0.70 +1.43  +2.10 +3.05




Part 2.3: Graph-based Dependency Parsing




Graph-based Dependency Parsing

OFind the highest scoring tree from a complete

dependency graph
He, does, it; here, He, doesz it; here,

Y™ =argmax score(X,Y)

Yed(X)



First-order as an Example

OThe first-order graph-based method assumes that
arcs in a tree are independent from each other (arc-
factorization)

AN

So He, does, it; here,

score(X,Y) = Z score(X,h,m)

(h,m)eY



How to Score an Arc

OGiven an sentence, how to determine the score of
each arc?

score(2,4) =7

a

So He, does, it; here,

OFeature based representation: an arc is
represented as a feature vector f(2,4)

score(2,4) = w-f(2,4)



Features for an Arc

As  McGwire  neared : fans  went  wild
[went] [vBD] [As] [ADP] [went]
[VERB] [As] [IN] [went, VBD] [As. ADP]
[went, As] [VBD, ADP] [went, VERB] [As, IN] [went, As]
[VERB, IN] [VBD, As, ADP] [went, As, ADP] [went, VBD, ADP] [went, VBD, As]
[ADJ, *, ADP] [VBD, *, ADP] [VBD, ADJ, ADP] [VBD, ADJ, *] [NNS. *, ADP]
[NNS. VBD, ADP] [NNS, VBD. *] [ADJ, ADP, NNP] [VBD, ADP, NNP] [VBD, ADJ, NNP]
[NNS, ADP, NNP] [NNS, VBD, NNP] [went, left, 5] [VBD, left, 5] [As, left, 5]
[ADP, left, 5] [VERB, As, IN] [went, As, IN] [went, VERB. IN] [went, VERB, As]
[JJ. *. IN] [VERB. *. IN] [VERB, 1. IN] [VERB. 1J, *] [NOUN, *, IN]
[NOUN, VERB, IN] [NOUN, VERB, *] [J, IN, NOUN] [VERB, IN, NOUN] [VERB. 1J, NOUN]
[NOUN. IN, NOUN] [NOUN, VERB, NOUN] [went, left, 5] [VERB, left, 5] [As, left, 5]

[IN, left, 5]
[NNS. VED, ADP, NNF]
[went. VERB, As, IN]
[went, VERB, left, 5]

[went. VBD. As, ADP]
[went, VBD, left, 5]
[VERB, 1J, *, IN]
[As, IN, left, 5]

[VBD, ADJ. *. ADP]
[As, ADP, left, 5]
[NOUN, VERB. *, IN]
[went, As, left, 5]

[NNS, VBD, *. ADP]

[went, As, left, 5]

[VERB, 1J, IN, NOUN]

[VERB, IN, left, 5]

[VED, ADJ. ADP, NNF)
[VBD, ADP, left, 5]
[NOUN, VERB, IN, NOUN]
[VBD, As, ADP. left, 5]

[went, As, ADP, left, 5]
[VBD, ADJ, ADP, left, 5]
[ADJ, ADP, NNP. left, 5

[VERB, As, IN, left, 5]

IVERB. *. IN. left. 51

[went, VBD, ADP, left, 5]
[VED, ADJ. *. left, 5]
[VBD, ADP, NNP, left, 5]
[went, As, IN, left, 5]
IVERB. JJ. IN. left. 5]

[went, VBD. As, left, 5]
[NNS, *, ADP., left, 5]
[VBD, ADJ, NNP, left, 5]
[went, VERB, IN, left, 5]
IVERB. JJ. *. left. 5]

[ADJ, *. ADP., left, 5]
[NNS, VBD, ADP, left, 5]
[NNS, ADP, NNP, left, 5]
[went, VERB, As, left, 5]

[NOUN. *. IN. left. 5l

[VBD. *, ADP, left, 5]
[NNS, VBD. *, left, 5]
[NNS, VBD, NNP, left, 5]
[0, *, IN, left, 5]
INOUN. VERB. IN. left. 51



<+ Decoding for first-order model

OMaximum Spanning Tree (MST) Algorithm

OEisner (2000) described a dynamic programming
based decoding algorithm for bilexical grammar

OMcDonald+ (2005) applied this algorithm to the
search problem of the first-order model



Treebank —) So He, does, it; here,

- /\
AN O

He,  does, it; here, He,  does, it; here,

Gold-standard parse Y* 1-best parse Y- with w(k)

wke1) = wk + §(X,Y*) — F(X,Y)



ScoreF(x, ¢) = (Wxh + b’)

Atomic Features  Phrases
Input fi f | pr p2
TETET IR
O O OO O
Embeddings (O (O O IO 1O
O O O O O
'
‘a:concat(EB) @ @ @ O O
 Hidden Layer l
h=g(Wixa + b}) O?O
Output Layer O O

prefix infix suffix
X X, h X3 m ' X5 Xs
| |
Ol |Of [Of [Of [O] |Of |O
O] 10] (O [Of |1O] [Of |O
O] 10] (O] [Of |1O] [Of |O
| average | average | average

prefix embedding  infix embedding  suffix embedding

Figure 3: Illustration for phrase embeddings. h, m
and x( to xg are words 1n the sentence.

Pei, W., Ge, T., & Chang, B. (2015). An Effective Neural Network Model for Graph-based
Dependency Parsing. ACL.



O Each dependency arc in a sentence is scored using MLP that
is fed the BI-LSMT encoding of the words at the arc’ s end

points

lvjumped If I 7 Ve l

concat concat concat

— LSTM/ \—|—= LSTM/ —|—= LSTM/ |

I TR

P
=
%
c
[}
Z
X
&
2
[+
®

Kiperwasser, E., & Goldberg, Y. (2016). Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations. TACL.



ff;'\\_,D/e\\'\ep Biaffine Attention for Dependency Parsing

hghead) hgdep) hghead) hgdep)
FC/ReLU [@®0] [@09] [©Ce]| [@00]
. N S
(0000] (0000|0000 > - - - ~|[0000][080e) <0000
BiLSTM A t A
(@000} (0000|0000 > - - - —{[0000][0000) {0800
i i
Embed C e [©@e][00e]
/ \ / N
(ROOT) ROOT : PUNCT
s(7re) FISCt B 14T I ke Sl © Just optimize the likelihood of the
@00 head, no structured learning
T= % %00 - [eoew] |  This is a local model, with global
[e=e] decoding using MST at the end

Timothy Dozat and Christopher D. Manning. Deep Biaffine Attention for Neural Dependency Parsing.
ICLR 2017.



Results

English PTB-SD 3.3.0  Chinese PTB 5.1

Type Model UAS LAS UAS LAS
Ballesteros et al. (2016) 93.56 91.42 87.65 86.21
Transition  Andor et al. (2016) 9461 92.79 - -
Kuncoro et al. (2016) 95.8 94.6 - -
Kiperwasser & Goldberg (2016) 939 919 87.6  86.1
G Cheng et al. (2016) 94.10 91.49 88.1 85.7
P Hashimoto et al. (2016) 94.67 92.90 = =
Deep Biaffine 95.74 94.08 89.30 88.23

OTuning Adam

Adam
Model UAS LAS
B2=.9 95.75 94.22
B2 =.999 95.53* 93.91*%




CoNLL 2018 Shared Task

OMultilingual Parsing from Raw
Text to Universal Dependencies

O http://universaldependencies.org

/conll18/
082 test sets from 57 languages

O 61 of the 82 treebanks are large

O The other 21 treebanks are small

[0 7 treebanks have training data of
a still reasonable size

[0 5 are extra test sets in languages
where another large treebank
exists

O 9 are low-resource languages
with no training data available

4| Hunden

punct
obl
nsubj:pass !/—aase::§
!"del\ g’ !‘aux. ass. g&"det
dog was ed e i

The

punct
g-exgl:uass &
2 Kyseto  ce npecnegsaiwe or KoTkata .
nsubj:pass punct
3 Pes byl honén  kotkou .

punct
obl:
L i ﬁ‘b;h

jagades av katten



http://universaldependencies.org/conll18/

O Rank 1st according to LAS

0 Baseline model:
O Dozat et al. (2017)

O Winning strategies for parser:
O ELMo: +0.8
O Ensemble: +0.6

O Treebank Concat.: +0.4
(estimated on Dev set.)

LAS Ranking

. HIT-SCIR (Harbin)

75.84 + 0.14 [0K] (p<@.001)

- TUrKUNLP CTurkuy
. UDPipe Future (Praha)
. LATTICE (Paris)

-5. ICS PAS (Warszawa)

. CEA LIST (Paris)

. Uppsala (Uppsala)

. Stanford (Stanford)

. AntNLP (Shanghai)

. NLP-Cube (Bucuresti)

. ParisNLP (Paris)

. SLT-Interactions (Bengaluru)
. IBM NY (Yorktown Heights)

. UniMelb (Melbourne)

. LeisureX (Shanghai)

. KParse (istanbul)

. Fudan (Shanghai)

. BASELINE UDPipe 1.2 (Praha)
. Phoenix (Shanghai)

. CUNI x-ling (Praha)

. BOUN (Istanbul)

. ONLP lab (Ra'anana)

. iParse (Pittsburgh)

. HUJI (Yerushalayim)

. ArmParser (Yerevan)

73.11 + 0.13 [0K]
73.02 + 0.14 [0K]
73.02 + 0.14 [0K]
72.56 + 0.14 [0K]
72.37 + 0.15 [0K]
72.29 + 0.14 [0K]
70.90 + 0.15 [0K]
70.82 + 0.14 [OK]
70.64 + 0.14 [0K]
69.98 + 0.14 [0K]
69.11 + 0.16 [0K]
68.66 + 0.15 [0K]
68.31 + 0.16 [0K]
66.58 + 0.16 [0K]
66.34 + 0.15 [0K]
65.80 + 0.15 [0K]
65.61 + 0.16 [0K]
64.87 + 0.16 [0K]
63.54 + 0.15 [0K]
58.35 + 0.15 [81]
55.83 + 0.11 [65]
53.69 + 0.15 [80]
47.02 + 0.11 [66]

73.23'E'BTT1'TURI"TE:UTBng"""""I

(p=0.221)
(p=0.461)
(p<@.001)
(p=0.036)
(p=0.191)
(p<@.001)
(p=0.242)
(p=0.032)
(p<0.001)
(p<0.001)
(p<@.001)
(p=0.002)
(p<@.001)
(p=0.015)
(p<9.001)
(p=0.048)
(p<@.001)
(p<0.901)
(p<@.001)
(p<@.001)
(p<0.001)
(p<0.001)
(p<0@.001)

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, Ting Liu. Towards Better UD Parsing: Deep
Contextualized Word Embeddings, Ensemble, and Treebank Concatenation. CoNLL 2018.



er Contextualized Word Embeddings (ELMo)

OModels pre-trained on the ImageNet are widely
used for Computer Vision tasks

OWhat' s the proper way to conduct pre-training
for NLP?

OLeveraging Language Modeling to get pre-trained
contextualized representation models
Orely on large corpora, instead of human annotations

O works very well -- improve the performance of existing
SOTA methods a lot

Peters+. Deep contextualized word representations. NAACL 2018.



Two Extensions on ELMo

OSupporting Unicode range

OTraining with sample softmax

OUse a window of 8,192 surrounding words as
negative samples

OMore stable training and better performance

OELMo Training

OData: 20M words randomly sampled from raw text
for each language

OTime: 3 days per language on a Nvidia P100

OWe release the pre-trained ELMo
O https://github.com/HIT-SCIR/ELMoForManylLangs



https://github.com/HIT-SCIR/ELMoForManyLangs
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Part 2: Summary

O Neural Graph-based Structured Prediction
O Sequence Labeling: Neural CRF > RNN (LSTM) > RNN+CRF
O Segmentation: Neural Semi-CRF
O Dependency Parsing: Neural features > LSTM - Biaffine

O Neural nets can provide continuous features in discrete
structured models

O Inference and learning are almost unchanged from the
purely discrete model



Part 3: Transition-based Methods




Part 3.1: Transition Systems




A transition system

COAutomata

OState
CStart state —— an empty structure
COEnd state —— the output structure

OIntermediate states —— partially constructed
structures

OActions
COChange one state to another



A transition system

COOAutomata




A transition system

COOAutomata

/ao\







A transition system

COOAutomata

P A, A~ a1~

aO\

./




Part 3.2: Transition-base
Dependency Parsing




ij_:}l'ransition-based Dependency Parsing

OGradually build a tree by applying a sequence of
transition actions — shift/reduce (Yamada and
Matsumoto, 2003; Nivre, 2003)

OThe score of the tree is equal to the summation of
the scores of the actions

score(X,Y) = Zscore(X Jh,a)
i=0
a, —> the action adopted in step i

h, —> the partial results built so far by a,...q,_
Y —> the tree built by the action sequence gq,...a,



- ~~Transition-based Dependency Parsing

OThe goal of a transition-based dependency parser is
to find the highest scoring action sequence that
builds a legal tree.

Y™ =argmax score(X,Y)

Yed(X)

= arg max Z score(X,h;,a,)

ag...a, —>Y ;=0



O Greedily predict a transition sequence from an initial parser

state to some terminal states
O State (configuration)
= Stack + Buffer + Dependency Arcs

Stack Buffer .
P . classifier LEFT-ARC()
I ROOT has_VBZ good_JJ ' | Contro NN .. | ﬁ RIGHT-ARC(/)
—_—m =l e e e == e === 4 SHIFT
nsubj
He_PRP Arc Standard algorithm

Configuration



Configuration

Configuration

Operation:
i * Add a left arc (Sy)

* Remove “He PRP” from Stack

Stack Buffer
r ——————— r ———————————
I ROOT has_VBZ I | good JJ Control NN . . I
L — J
nsubj

He_PRP




Configuration

Configuration

-
I ROOT has_VBZ I | good JJ Control NN . . 1

He_PRP

Operation:
+ Shift “good_JJ” from Buffer to top of Stack




Configuration

Configuration

I ROOT has_VBZ Control_NN I 1
N o - - —-— o o - -— o -—
o~ nsubj ‘/:zmod

He PRP good_JJ

Operation:
i * Add aright arc (S;)

* Remove S, (“Control_NN”) from Stack

Stack Buffer
p—————— | (>
' ROOT has_VBZ g = |
A -

PN
He_PRP Control_NN

Amod

good_JJ




An Example

Arc-standard Algrithm

Stack Buffer

SHIFT

Stack

fe NI
SuY/

RIGHT-ARC
PHRTIA, R
SIAFRTIER — M43 A
He Tt

m-

sub N b j SER
/N SR




from single words
Sowp; Sow; Sop; Nowp; Now; Nop;

Niwp; Nyw; Nip; Nowp,; Now; Nop;

from word pairs
SowpNowp, SowpNow,; SowNowp, SowpNop;
SopNowp; SowNow; SopNop

NopNip
from three words
Stack Buffer NopN1pNap; SopNopN1p; SonpSopNop;
_ _ (e e s e P - SopSopNop; SopSorpNop: SopNopNop
Conﬂguratlon I ROOT has VBZ good JJ I | Control_NN ._. I )
O J e e = = J Table 1: Baseline feature templates.
nsubj w — word; p — POS-tag.
He_PRP distance
S(pwd,' S()pd.' 1\"()Wd,' N, ()pd,'
S() M"M)wd,' S()p]\tr()pd,'
. valency
Feat_u re Vector: g Sowv,.; Sopve, Sowvy,; Sopvi; Nowvy, Nopvy;
° Blnary unigrams
» Sparse e . 0 . o . 010 Sonw; Sonp; Sol: Soiw; Sawp; Sal:
* High-dimensional Sorw: Sorp: Sorl: Noyw. Nowp: Nal:
third-order
Sonz2w; Sonap; Sonls Soizw: Soizp; Sozl;
Feature templates: a combination of elements from the configuration. ?)rzsw: s;),.zp; ?Sozé NoSrzW-' Nowzp; Noiol:
. . H . OPD0IPD012P) D0PD0rPO0r2P)
For example: (Zhang and Nivre, 2011): 72 feature templates SopSonpSonap: NopNowpNoiap:
label set
Sowsy; Sopsr; Sowsi; Sopsi; Nowsi; Nopsi;
Table 2: New feature templates.
w — word; p — POS-tag; v, v, — valency; [ —
dependency label, s;, s, — labelset.




Part 3.2: Neural Transition-based
Dependency Parsing




Softmax layer:
p = softmax(Wsh)
Hidden layer:
h=(Wyzv + Wizt + Wizl +b)3

-------

)

words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good.JJ | | control NN ...
< nsubj
He PRP

Chen, D., & Manning, C. D. (2014). A Fast and Accurate Dependency Parser using Neural Network. ACL.



Results

Parser Dev Test Speed . Dev Test Speed
UAS LAS| UAS LAS| (sent/s) UAS LAS| UAS LAS| (sent/s)
standard 90.2 87.8| 89.4 87.3 26 standard 82.4 80.9| 82.7 8l1.2 72
eager 89.8 87.4| 89.6 87.4 34 eager 81.1 79.7| 80.3 78.7 80
Malt:sp 89.8 87.2| 893 869 | 469 Malt:sp 82.4 80.5| 824 80.6| 420
Malt:eager | 89.6 86.9| 89.4 86.8| 448 Malt:eager | 81.2 79.3| 80.2 78.4| 393
MSTParser | 91.4 88.1| 90.7 87.6 10 MSTParser | 84.0 82.1| 83.0 81.2 6
Our parser | 92.0 89.7| 91.8 89.6| 654 Our parser | 84.0 82.4)| 839 824| 936
PTB (SD) CTB (SD)

Chen, D., & Manning, C. D. (2014). A Fast and Accurate Dependency Parser using Neural Network. ACL.



LSTM Feature Extractor

OChen and Manning with richer (LSTM) features

Configuration:

5 bg b, by b.
[ Jumped the lazy dog ROOT
.
fox
/
[ 4
brown
Scoring:
{ 1 Shift)

[ Vaos_| ILmrtll
- L
_concat ¢ _concat )
‘ | 7 [ [ ]
b le— it LSTMP }*rr LSTMY o——1 LSTA® i+
ey ||| RSmpReEe ||| |,

VLSTM/ |t LSTALS | —\ LSTM! = —= LSTAMS -

ST LJLJ S LJ """ il o gl

brown Xtox jumprod Hover

Keperwasser, E., & Goldberg, Y. (2016). Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations.
TACL.



Stack LSTM

ODyer Parser (Chen and Manning with less features)

&3«9&@
S EIJ.?E B
Lo fi 20‘?/

1 I amod I T T T I
an (\ decision was made  ROOT
overhasty 0.

I \2 <«— REDUCE-LEFT(amod)
A I e SHIFT

!

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL.



Stack LSTM

t t pop t t push t t t

\i
A\
Y

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL.



(\i;;;g\Subtree Representation (Recursive NN)

det
amod

an overhasty decision

head
F_ rel . \
an det '? c1 \head

overhasty amod decision

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL.



Results

Development Test Dev. set Test set

UAS LAS | UAS LAS UAS LAS | UAS LAS
S-LSTM 93.2 909 | 93.1 90.9 S-LSTM 87.2 859 | 87.2 85.7
—POS 93.1 904 | 927 90.3 —composition | 85.8 84.0 | 853 83.6
—pretraining | 92.7 904 | 924 90.0 —pretraining | 86.3 84.7 | 85.7 84.1
—composition | 927 899 | 922 89.6 —POS 82.8 79.8 | 822 179.1
S-RNN 928 904 | 923 90.1 S-RNN 86.3 84.7 | 86.1 84.6
C&M (2014) | 922 89.7 | 91.8 89.6 C&M (2014) | 840 824 | 839 824

PTB (SD) CTB (CTB5)

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL.



W w t i
1
l% T X : X
<W> <W> NN : , .
1
P P wW t i w t
a a
, ; f o I
i t UNK JJ : party NN
</w> </w>

Ballesteros, M., Dyer, C., & Smith, N. A. (2015). Improved Transition-Based Parsing by Modeling Characters instead of
Words with LSTMs. EMNLP.



Part 3.3: Transition-base Methods with
Beam-search Decoding




Search

OFind the best sequence of actions

‘a“:\?'
PED aany




Beam-search decoding




Beam-search decoding




Beam-search decoding




Beam-search decoding




Sentence-level Log Likelihood

9 ef(w> 0)7,
plyi | ,0) = oI @, );

D

y;EGEN(x)

flx, 0)i=>" oz, yi k, ar)

ar€yY;

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.



Contrastive Estimation

L@O)=- Y  logp(yi|z:0)
(zi, yi)E(X,Y)

ef(ml ?9)1

— Z log 2(..0)

(zi, yi)€(X,Y)

k Z log Z (x3,0) — f(x:,0);

(zs, ¥: ) E(X,Y)

Zl= Y &%

y; €GEN(z)

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.



Contrastive Estimation

rey=- > logp(yi|=i,0)
(zi,y:)€(X,Y)

ef(a:i70)i

=L TG

(z:, ¥:)E(X,Y)

= Z log Z'(x;,0) — f(x4,0),

(zi,y:)€(X,Y)

Z,(.CL', 9) — S: ef(l’, 9)j
y;EBEAM(x)

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.



Google’ s SyntaxNet

OAndor et al. follows this method
DOffel‘S theorem Training with Beam Search:

. Sum scores of all decisions across entire history.... NI Q
OTries more tasks (&= et L e o o
' o 4 4 4

C0Get better results (bl ko s -
(- ) Corect Fm@wﬁ

’ * * ’ The horse raced past the barn fell .
- (o o -

Update: maximize P(correct parse) relative to the set of alternatives

Globall alized SyntaxNet Architecture (Overview!

Andor, D., Alberti, Chris., Weiss, D., Severyn, A., Presta, A., Ganchey, K., Petrov, S., & Collins, M. (2016). Globally
Normalized Transition-Based Neural Networks. ACL.



Changes of Performance

Test on PTB with Stanford Dependency

Zhang & McDonald Chen & Manning Dyer etal.(2015) Zhou et al. (2015) Andor etal. (2016) Dozat & Manning
(2014) (2014) (2017)

96.0
95.0
94.0
93.0
92.0
91.0
90.0
89.0
88.0
87.0
86.0

m UAS mLAS



Part 3.4: Advanced Topics




Semantic Dependency Graph

Agt

ePurp

mNeg mMod atv Agt
ROOT, i Ko /M3 4 Bs He Wy  Hlls 2o
he too  mean , not willing treat us eat

Train Dev Test

#sent 8,301 534 1,235
#word | 250,249 15,325 34,305
#sent | 10,817 1,546 3,096
#word | 128,095 18,257 36,097

NEWS

TEXT

Wanxiang Che, Yu Ding, Yanqiu Shao, Ting Liu. SemEval-2016 Task 9: Chinese Semantic
Dependency Parsing.



Semantic Dependency Graph

O List-based transition system

2 e

Stack s Stack p Buffer b
Processed words Skipped words Unprocessed words

O New transition actions
O Left-Reduce, Right-Shift, No-Shift, No-Reduce, Left-Pass, Right-Pass, No-Pass

Yuxuan Wang, Jiang Guo, Wanxiang Che and Ting Liu. Transition-Based Chinese Semantic
Dependency Graph Parsing. CCL 2016. Best Paper Award.



IT-BS Classifier

No-Shift No-Pass

@

e, = max{0, W[s, & b & p, & ay] + d}

p

A

N
ad

iff (treat) A J(us) -

[ I
fihe)  A(too) if(treat)y A T(us)

A

O /[N (mean) atdse

Yuxuan Wang, Wanxiang Che, Jiang Guo and Ting Liu. A Neural Transition-Based Approach for Semantic Dependency Graph
Parsing. AAAI 2018.



Semantic Dependency Graph

OResults

73

72.8

72.6

72.4

72.2

72

71.8

71.6

71.4

71.2

71

Experiments on TEXT Corpus of SemEval 2016 Task 9

Baseline Our Model (BS-IT)
mLF ENLF

62

61.5

61

60.5

60

59.5

59



OOver 7,000 languages all around the world

OMost of the languages are low-resource for
dependency parsing

(Colors indicate language families)



=~ 30 languages

Rich Resource Low Resource Zero Resource

Rlch >7000 Languages

\ Low Resource ‘
\ Zero Resource ‘
BE-00m0 _1 |.

EN ZH DE SP .

Treebank Scale

Language



~ 30 languages

Rich Resource Low Resource Zero Resource

Treebank Scale

\ Zero Resource ‘

Fren >7000 Languages
Resource

Question 1:
é How to create parsers for the majority of those low/zero-resource
languages ?
‘ Low Resource ‘

LIJ_LIJJ_ 1.

Language
EN ZH DE SP .



=~ 30 languages

Rich Resource Low Resource Zero Resource

>7000 Languages

Rich

Data Transfer

Transfer Learnlng J
Model Transfer
\ Low Resource ‘
\ Zero Resource ‘

Treebank Scale

Language
ENZH DESP . guas



=~ 30 languages

Rich Resource Low Resource Zero Resource

* Universal vs. Heterogeneous

Treebank Scale

Rlch >7000 Languages
Resource

Question 2:

Do the existing rich-resource treebanks benefit each other?
| * Multilingual vs. Monolingual

l Low Resource ‘
\ Zero Resource ‘

Language

EN ZH DE SP .




Cross-lingual Dependency Parsing

OUse the model trained on source language to
parse the target language

SBV VOB VOB

YN N

Source: 1 like  playing basketball  Rich resource language

How to overcome the lexical inconsistency problem?

NV_\ Low resource lanaguage
2 3 W4



O Use bi-lingual word embeddings to overcome the lexical
inconsistency problem

inter?d@

EES

SCi

elega
i3

4%

B

Target model

Unified
model

)

—> fine-tuning

Cross-lingual
word embeddings

t

BiTexts

Our paper: ACL 2015, AAAI 2016, JAIR 2016 , CoNLL 2017



i-lingual based Named Entity Recognition

O The parallel corpus have inter-translated named entities

. . ANEGFD ?
Kerry to visit Jordan, Israel Jordan <
Palestinian pjye c;lﬁenda. ewe) ?

‘ / NULL(with)?
HaLBE{EL AT H <
?EE‘LE'E—'.L’J_{EL/{ E*D:Fﬁ*EE h45 (Israel) ? \/

O Bi-lingual constraint based methods

Our paper: NAACL 2013, ACL 2013, AAAI 2013 (Outstanding mention award)



O Each corpus can be looked as a task
O Multi-lingual treebanks
O Mono-lingual heterogeneous treebanks
O Multiple NLP tasks

O Shared parameters
O LSTM(B), LSTM(S)
O LSTM(A)
O BiLSTM(chars)
O RecNN
O wy, Wy, Ws
O Epos» Echar» Erelt Eact

e e e e e e |

Butter
LSIM

-
/’/.",‘*

Butter
LSIM

=2 |

Wit1

Taskt # #

Wit1

Stack
| CTA

Stack
| CTN

Configuration (Task 1)

_________________

Configuration (Task 2)

Jiang Guo, Wanxiang Che, Haifeng Wang and Ting Liu. A Universal Framework for Transfer Parsing across

Multi-typed Treebanks. Coling 2016.




Distilling Knowledge for

Transition-based Structured Prediction

OTransition-based Machine Translation

like  this book
B/ BN X AP —Q—Q—Q—Q—O
00 0 0

Search Space

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based
Structured Prediction. ACL 2018.




m

ﬁblems of the Generic Learning Algorithm

Ambiguities in training data
“‘both this and the seems reasonable”

B/ER/ZER/ B — )-
\“ D \“

Search Space

“What if | made wrong decision?”

Training and test discrepancy |

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based
Structured Prediction. ACL 2018.



m

ﬁblems of the Generic Learning Algorithm

Ambiguities in training data Training and test discrepancy
Ensemble (Dietterich, 2000) Explore (Ross and Bagnell, 2010)

\

B/ER/ZER/ B — )-
S » \“

Search Space

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based
Structured Prediction. ACL 2018.



m

ﬁblems of the Generic Learning Algorithm

Knowledge Distillation
Ambiguities in training data | Training and test discrepancy

\

B/ER/ZER/ B — )-
S » \“

Search Space

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based
Structured Prediction. ACL 2018.



Knowledge Distillation

Learning from negative log-likelihood

Learning from knowledge

distillation
argmax l(y=this) p(y | I, like) argmax sumy, q(y) p(y |1, like)
1 1
0.5 / 0.5
o . /
book | like love the this book 1 like love the this

is the output distribution

of a teacher model (e.g. ensemble)

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based
Structured Prediction. ACL 2018.



nowledge Distillation: from Where

Learning from knowledge distillation

argmax sumy, q(y) p(y |1, like)
1

0.5 /
0

book 1 like love the this

Ambiguities in training data
Ensemble (Dietterich, 2000)
We use ensemble of M structure predictor as the teacher q

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based
Structured Prediction. ACL 2018.



‘KD for Transition-based Structured Prediction on

Explored Data

sumy q(y) p(y | 1, like, the)

0

book 1 like love the this

book

ﬁ

® o

B/ EW/RER/F —

Training and test discrepancy
Explore (Ross and Bagnell, 2010)

We use teacher q to explore the search space & learn from KD on the explored
data




Results

Transition-based Dependency Parsing LAS Neural Machine Translation BLEU

| Penn Treebank (Stanford dependencies) IWSLT 2014 en-de
Baseline 90.83 Baseline 22.79
Ensemble (20) 92.73 Ensemble (10) 26.26
Distill (reference, a = 1.0) 91.99 Distill (reference, a = 0.8) 24.76
Distill (exploration) 92.00 Distill (exploration) 24.64
Distill (both) 92.14 Distill (both) 25.44
Ballesteros et al. (2016) (dyn. oracle) 91.42 MIXER (Ranzato et al. 2015) 20.73
Andor et al. (2016) (local, B=1) 91.02 Wiseman and Rush (2016) (local B=1) 22.53
Wiseman and Rush (2016) (global B=1) 23.83

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based

Structured Prediction. ACL 2018.



2.5
]

82.0
|

— [l  Baseline -
] Distill {(both)

81.5
|

810

805
1

Transition-based Parsing Neural Machine Translation

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu. Distilling Knowledge for Search-based
Structured Prediction. ACL 2018.



Part 3: Summary

OTransition-base Methods for Structured Prediction
ONeural Transition-base Methods

OTransition-base Methods with Beam-search
Decoding

OAdvanced Topics
O Semantic dependency graph parsing
O Multilingual dependency parsing
O Knowledge Distillation



Part 4: Applications




O http://Itp.ai
O Rich and accurate NLP toolkits
O Chinese word segmentation,
O POS tagging, NER, Dependency parsing,
O Semantic role labeling, semantic dependency parsing
O Open source for research

O Evaluation
O 1st place/13 at CoNLL 2009: syntactic and semantic dependency
parsing
O 1st place/27 at CoNLL 2018: multilingual syntactic dependency
parsing



http://ltp.ai/

LTP-Cloud Service

O http://www.ltp-cloud.com/
O Advantages

OInstallation free, saving hardware, easy usage, cross-
platform, cross-programming languages, update in time

EET @narvan . LI IJ [N
ETFRUAUANSIANAELTIRS T (a9 .

3 W

LTP Web Ser

LTP Server 1

b(MLu 0101

LTP Server n


http://www.ltp-cloud.com/

Users of LTP-Cloud

O There are more than 10,000 users
O Response more than 700,000 requests each day




Awards

O 2016, the 1st prize of Heilongjiang Province
Science and Technology Progress

O 2010, the 1st prize of Weichang Qian
Chinese Information Processing Science
and Technology Award

) ARy L
d MY, iR
o AHzFAite ARk
SRZ TE L UERS
; A% 40 K e P

iE B8 2016-020-01

MELR. WETUAFONFEA
-1
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Our Consumers

A\
Tencent Eid LA V2 Huawe _
Bai@®BE it

wanx  (S)igmigx SONY giEMENS

make. believe
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OAs Input Features

O Multi-task Learning
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OAs Information Extraction Rules
OAs Input Features

O Multi-task Learning

OAs Input Structures

O As Structured Prediction



As Information Extraction Rules

OFor example
OPolarity-target pair extraction

& %

OProblem

OThe extraction rules are very complex
OThe parsing results are inexact



As Information Extraction Rules

O Sentence compression based PT pair extraction
O Simplify the extraction rules
O Improve the parsing accuracy

BRI ROGT ROOT ROOT
SBV

—

TAD .

ADV
SBV
/\ comp f-\ o comp
PR T BE}# ﬁ? ﬁ% Y Jﬁi T’f’* ﬁ% T‘Eﬁ
besides photo goo phot:o good <;c1een f01 people feel goo qcuen good

O Use a sequence labeling model to compress sentences
O The PT pair extraction performance improves 3%

Wanxiang Che, Yanyan Zhao, Honglei Guo, Zhong Su, Ting Liu. Sentence Compression for Aspect-Based
Sentiment Analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2015, 23(12)
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O Multi-task Learning

OAs Input Structures

O As Structured Prediction



Path Features

OFor Example
O Semantic Role Labeling (SRL), Relation Extraction (RC)

AM-LOC Entity-Destination(ey, ¢2)
UNESCO is holding its meetings in Paris People;.,; have moved into downtownp,.,
LOC nsuoj nmod
(a) Semantic Role Labeling. (b) Relation Classification.

OThe parsing path features are very important
O People <--> downtown: nsubj € moved - nmod

OBut they are difficult to be designed and very sparse



Path Features

O Use LSTMs to represent paths
O All of word, POS tags and relations can be inputted

next layer

'&"'A'I—F"",&'l—""',!-‘l—'"",-l-‘l—'"",-l'l—""',-'—‘l—"""/l-'l—"\_ . -.--\.. e ._..../,_.,_...

<_.._<._._<_._<_._<_.._<_._<_._<_._<_._<_._

// / .x1
he N/ had V o trouble N . ralsmg V

s
’ Z

subj obj nmod

Michael Roth and Mirella Lapata. Neural Semantic Role Labeling with Dependency Path Embeddings. ACL 2016



Hidden Units of Parsing as Features

OThe hidden units for parsing include soft syntactic
information

OThese can help applications, such as relation extraction

hghead) hgdep) h(head)  p(dep)
FC/ReLU @] @
_ (008} [0008][0008] > - - - «| (08008808 | {000e]
BiLSTM 7 7
(@000} {0000 [ @808 | - - - «{[0000][0000) {eecd]
Embed @ #

(ROOT) ROOT . PUNCT

Meishan Zhang, Yue Zhang and Guohong Fu. End-to-End Neural Relation Extraction with Global Optimization.
EMNLP 2017.
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Multi-task Learning

OMTL for Syntactic Parsing and Semantic Role
Labeling |

B-ARGO B-V B-ARGl I-ARGI I-ARGI )

climbing (0] O B-ARGO I-ARGO B-V
Spred srole
Feed Bilinear Feed |
Forward Forward )
[ Multi-head self-attention + FF ] J
1 .

[ Syntactically-informed self-attention + FF ] p

A

PRP VBP:PRED DT NN VBG:PRED ]

[ Multi-head self-attention + FF ] r
I saw the sloth  climbing

« Emma Strubell, Patrick Verga, Daniel Andor, David Weiss and Andrew McCallum. Linguistically-
Informed Self-Attention for Semantic Role Labeling. EMNLP 2018.
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O Recurrent Neural Networks
O Composing sequentially

the
O Recursive Neural Networks

O Use parse trees as input structures
O Composing according to parsing structures

cat climbs the tall tree

Richard Socher, Cliff Chiung-Yu Lin, Andrew
Y. Ng and Christopher D. Manning. Parsing

Natural Scenes And Natural Language With

Recursive Neural Networks. ICML 2011.

the cat climbs the tall tree



Tree-LSTMs

O Standard LSTM

« Tree-LSTM
output vector output vector i) A forget
I I \}m gate
output gate —p» ' output gate / y ¢

output

output gate

L ...

|

input vector input vector

forget
step © stept+ 1 . | gate

input gate —p»| k f_ . input gate i A /m—
T forget gate T<_ \ ?
/ K i

+<— input gate

input

» Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic
representations from tree-structured long short-term memory networks. ACL 2015.

« Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-term
structures. ICML 2015.

memory over recursive



Graph-LSTMs

ADVCL

DET PREP_OF

PREP_ON

N
The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the LS858E point mutation on exon-21 was noted in 10.
| NEXTSENT
All patients were treated with sofitinib and showed a partial response.

ADET/ XPA s
SUBJPASS EP_WI W
CONJ_AND

ROOT

e i N

All = patients = were = treated = with = gefitinib = and = showed = a = partial = response.

A - A~ N N

O—0—0—0—0—50—-0—-0—0—0—70 O~ 04— 04— 040404004~ 0<—0<%—0

Peng, N., Poon, H., Quirk, C., Toutanova, K., & Yih, W. 2017 Apr 5. Cross-Sentence N-ary Relation
Extraction with Graph LSTMs. Transactions of the Association for Computational Linguistics.



who, are__ you,
o VR \\\ AN are
Word RNN ,: I /\
1 =: A =: “‘| £ 'E who you
<s> i who i i are !
AR R
SH { SH | LRY SH } RR
acionnN o W WA P
— > > > 5
3 rfF 7
<s> SH SH LR SH

Dependency Decoder

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li and Ming Zhou. Sequence-
Machine Translation. ACL 2017.

to-Dependency Neural
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Event Extraction

%

.. |tax,||acts as a costimulatory signal | for |GM-CSF| and |IL-2 ||gene transcription| ...

Prot Positive Regulation Prot Prot Transcription
(x2) (x2)

David McClosky, Mihai Surdeanu, and Christopher D. Manning. Event Extraction as Dependency Parsing. ACL 2011.



Disfluency Detection

O Disfluency detection for speech recognition

I want a flight [ zo Boston + {um} to Denver |
—_— N N——
RM IM RP

O Transition System <O, S, B A>

O ﬁutput(O) : represent the words that have been labeled as
uent

O stack (S) : represent the partially constructed disfluency chunk

O buffer (B) . represent the sentences that have not yet been
processed

O action (A) : represent the complete history of actions taken by
the transition system

0 OUT: which moves the first word in the bufferto the output and
clears out the stackif it is not empty

0 DEL: which moves the first word in the bufferto the stack

Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan Zhang and Ting Liu. Transition-Based Disfluency Detection
using LSTMs. EMNLP 2017



Entity Extraction and Classification

OJoint Entity Extraction and Classification
OConvert the task into a directed graph

Per

Live In

Live In Loc In

~ Loc | | Loc
|

John, lives, in; Los, Angeles; California,

Shaolei Wang, Yue Zhang, Wanxiang Che and Ting Liu. Joint Extraction of Entities and Relations
Based on a Novel Graph Scheme. IJCAI 2018.



Part 4: Summary

OLTP -- Language Technology Platform

OHow to use tree or graph?
O As Information Extraction Rules
OAs Input Features
O Multi-task Learning
OAs Input Structures
O As Structured Prediction



nppiicati || Wore sea J ¢os tagging

Semanti
c Vector
Space

Deep
Learning

Convolutional NN Recursive NN

Mono-lingual Multi-lingual Multi-modal

Big Data
Data Data Data




Course Summarization

OFundamental NLP Tasks
OLexical, Syntactic and Semantic Analysis

OStructured Prediction
OSegmentation, Sequence Labeling and Parsing

OMethods
OGraph-based and Transition-based

OApplications
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