Deep Learning and Lexical, Syntactic and Semantic Analysis

Wanxiang Che (HIT)
Yue Zhang (SUTD)

Outline

Timeline	Content	Speaker
09:00-09:30	1. Introduction to Tasks	Wanxiang Che
09:30-10:00	2. Deep Learning Background	Wanxiang Che
10:00-10:10	Break	
10:10-10:40	3. Greedy Decoding	Yue Zhang
10:40-11:20	4. Dynamic Programming Decoding	Wanxiang Che
11:20-12:00	5. Beam-search Decoding	Yue Zhang

Part 1: Introduction to Lexical, Syntactic and Semantic Analysis

NLP Pipeline

CCL 2016 Tutorial

Syntactic

Named Entity Recognition

POS Tagging

Word Segmentation

总理/n [李克强 人名] 调研/v [上海 外高桥 地名]

总理/n 李克强/nh 调研/v 上海/ns 外高桥/ns

总理 李克强 调研 上海 外高桥

总理李克强调研上海外高桥

Part 1.1: Background

Word Segmentation

- Words are fundamental semantic units
- Chinese has no obvious word boundaries
- Word segmentation
 - Split Chinese character sequence into words
- Ambiguities in word segmentation
 - E.g. 严守一把手机关了
 - 严守一/ 把/ 手机/ 关/ 了
 - 严守/一把手/ 机关/ 了
 - 严守/一把/手机/关/了
 - 严守一/ 把手/ 机关/ 了

•

Part-of-speech (POS) Tagging

- A POS is a category of words which have similar grammatical properties
 - E.g. noun, verb, adjective
- POS tagging
 - Marking up a word in a text as a particular POS
 - based on both its definition and its context
- Ambiguities in POS Tagging
 - Time flies like an arrow.
 - 制服了敌人 vs. 穿着制服

Named Entity Recognition (NER)

- Named Entities
 - Persons, locations, organizations, expressions of times, quantities, monetary values, percentages, etc
- Locating and classifying named entities in text into pre-defined categories
- Ambiguities in NER

Kerry to visit Jordan, Israel Palestinian peace on agenda.

Syntactic Parsing

- Analyzing a natural language string conforming to the rules of a formal grammar, emphasizing subject, predicate, object, etc.
 - Constituency and Dependency Parsing

Semantic Role Labeling

- Recognizing predicates and corresponding arguments
 - Yesterday time, Mary buyer bought a shirt bought thing from Tom seller
 - Whom buyer did Tom seller sell a shirt bought thing to, yesterday time
- Answer "Who did what to whom when and where"
 - Question Answering
 - Information Extraction
 - **–**

Combinatory Categorial Grammars (CCG)

CCG Lexical Entries

 Pair words and phrases with meaning by a CCG category

- CCG Categories
 - Basic building block
 - Capture syntactic and semantic information jointly

Structured Prediction

- Predicting structured objects, rather than scalar discrete or real values
- Outputs are influenced each other
- For example
 - Sequence labeling/tagging
 - Given an input sequence, produce a label sequence of equal length.
 Each label is drawn from a small finite set
 - Parsing
 - Given an input sequence, build a tree whose structure obeys some grammar (compositional rules)

Part 1.2: Sequence Labeling

Sequence Labeling/Tagging

- Given an input sequence, produce a label sequence of equal length
- Each label is drawn from a small finite set
- Labels are influenced each other
- For example: POS tagging
 - Input
 - Profits soared at Boeing Co., easily topping forecasts on Wall Street, ...
 - Output
 - Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV ...

NER

- Input
 - Profits soared at Boeing Co., easily topping forecasts on Wall Street, ...
- Output
 - Profits soared at [Boeing Co. ORG], easily topping forecasts on [Wall Street
 IOC], ...
- Alternative Output (Tagging)
 - Profits/O soared/O at/O Boeing/B-ORG Co./I-ORG ,/O easily/O topping/O forecasts/O on/O Wall/B-LOC Street/I-LOC ,/O ...
- Where
 - B: Begin of entity XXX; I: Inside of entity XXX; O: Others

Word Segmentation

- Input
 - 严守一把手机关了
- Output
 - 严守一/ 把/ 手机/ 关/ 了/
- Alternative Output (Tagging)
 - 严/B 守/I 一/I 把/B 手/B 机/I 关/B 了/B
- Where
 - B: Begin of a word; I: Inside of a word

Semantic Role Labeling

- Input
 - Yesterday, Mary bought a shirt from Tom
- Output
 - [Yesterday time], [Mary buyer] bought/pred [a shirt bought thing] from [Tom seller]
- Alternative Output (Tagging)
 - Yesterday/B-time ,/O Mary/B-buyer bought/pred a/B-bought thing shirt/I-bought thing from/O Tom/B-seller
- Where
 - B: Begin of an arg; I: Inside of an arg; O: Others

CCG Supertagging

frequency	# cat types	# cat tokens in		# senten	entences in 2-21		# cat tokens in		# sentences in 00	
cut-off		2-21 not	in cat set	with m	issing cat	00 no	ot in cat set	with	missing cat	
1	1 225	0		0		12	(0.03%)	12	(0.6%)	
10	409	1 933	(0.2%)	1712	(4.3%)	79	(0.2%)	69	(3.6%)	

Sequence Labeling Models

$$P(y_{[1:n]}, x_{[1:n]}) \propto \prod_{t=1}^{n} P(y_t|y_{t-1}) P(x_t|y_t)$$

$$P(y_{[1:n]}|x_{[1:n]}) \propto \prod_{t=1}^{n} P(y_t|y_{t-1},x_t)$$

$$\propto \prod_{t=1}^{n} \frac{1}{Z_{y_{t-1},x_t}} \exp \left(\frac{\sum_{j} \lambda_j f_j(y_t, y_{t-1})}{+\sum_{k} \mu_k g_k(y_t, x_t)} \right)$$

$$y_{t-1}$$
 y_t y_{t+1}

CRF
$$P(y_{[1:n]}|x_{[1:n]}) \propto \frac{1}{Z_{y_{[1:n]}}} \prod_{t=1}^{n} \exp\left(\frac{\sum_{j} \lambda_{j} f_{j}(y_{t}, y_{t-1})}{+\sum_{k} \mu_{k} g_{k}(y_{t}, x_{t})}\right)$$

Features of POS Tagging with CRF

- Assume only two feature templates

tag bigramsword/tag pairsy_{i-1} y_ix_i

$$f_{100} = \begin{cases} 1 \text{ if } < y_{i-1}, y_i > = < n, v > \\ 0 \text{ otherwise} \end{cases}$$

$$g_{101} = \begin{cases} 1 \text{ if } x_i \text{ is ended with "ing" and } y_i = v \\ 0 \text{ otherwise} \end{cases}$$

CRF Decoding

$$\underset{y_{[1:n] \in GEN(x_{[1:n]})}}{\arg \max} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(x_{[1:n]}, y_i, y_{i-1})$$

where $GEN(x_{[1:n]})$ is all possible tag sequences

- Dynamic Programming Algorithm
 - Viterbi Algorithm

Viterbi Algorithm

- Define a dynamic programming table
 - $-\pi(i,y)$ = maximum score of a tag sequence ending in tag y at position i
- Recursive definition: $\pi(i, y) = \max_{t} \left(\pi(i 1, t) + \mathbf{w} \cdot \mathbf{f}(x_{[1:n]}, y, t) \right)$

²⁰¹⁶⁻¹⁰⁻¹⁴ Time

flies CCL 2016 Tutorialike

an

arrow 22

Part 1.3: Parsing

Dependency Parsing

- A dependency tree is a tree structure composed of the input words and meets a few constraints:
 - Single-head
 - Connected
 - Acyclic

Graph-based Dependency Parsing

Find the highest scoring tree from a complete dependency graph

$$Y^* = \underset{Y \in \Phi(X)}{\operatorname{arg\,max}} \, score(X, Y)$$

First-order as an Example

- The first-order graph-based method assumes that arcs in a tree are independent from each other (arc-factorization)
- Maximum Spanning Tree (MST) Algorithm

$$score(X,Y) = \sum_{(h,m)\in Y} score(X,h,m)$$

How to Score an Arc

Given an sentence, how to determine the score of each arc?

 Feature based representation: an arc is represented as a feature vector f(2,4)

$$score(2,4) = \mathbf{w} \cdot \mathbf{f}(2,4)$$

Features for an Arc

Decoding for first-order model

- Eisner (2000) described a dynamic programming based decoding algorithm for bilexical grammar
- McDonald+ (2005) applied this algorithm to the search problem of the first-order model

Transition-based Dependency Parsing

- Gradually build a tree by applying a sequence of transition actions – shift/reduce (Yamada and Matsumoto, 2003; Nivre, 2003)
- The score of the tree is equal to the summation of the scores of the actions

$$score(X,Y) = \sum_{i=0}^{m} score(X,h_i,a_i)$$

 $a_i \rightarrow$ the action adopted in step i

 $h_i \rightarrow$ the partial results built so far by $a_0...a_{i-1}$

 $Y \longrightarrow$ the tree built by the action sequence $a_0...a_m$

Transition-based Dependency Parsing

• The goal of a transition-based dependency parser is to find the highest scoring action sequence that builds a legal tree.

$$Y^* = \underset{Y \in \Phi(X)}{\operatorname{arg max}} \operatorname{score}(X, Y)$$
$$= \underset{a_0 \dots a_m \to Y}{\operatorname{arg max}} \sum_{i=0}^{m} \operatorname{score}(X, h_i, a_i)$$

Transition-based Dependency Parsing

- Greedily predict a transition sequence from an initial parser state to some terminal states
- State (configuration)
 - = Stack + Buffer + Dependency Arcs

Configuration

Transition Action: Left-ARC (/)

Operation:

- Add a left arc (S₀)
- Remove "He_PRP" from Stack

Configuration

Transition Action: SHIFT

Transition Action: RIGHT-ARC (/)

Configuration

Operation:

- Add a right arc (S_1)
- Remove S₀ ("Control_NN") from Stack

Configuration

An Example

Arc-standard Algrithm

初始状态

Stack只有根节点,待处理 词在Buffer中

SHIFT

将Buffer中第一个词压入 Stack

LEFT-ARC

弹出Stack中第二个词, 生成一条弧从栈顶词指 向第二个词

RIGHT-ARC

弹出栈顶词,生成一条弧 从栈顶第二个词指向栈顶 词

终结状态

Stack只有根节点,Buffer 为空

Traditional Features

Configuration

Feature Vector:

- Binary
- Sparse
- High-dimensional

Feature templates: a combination of elements from the configuration.

For example: (Zhang and Nivre, 2011): 72 feature templates

from single words

 S_0wp ; S_0w ; S_0p ; N_0wp ; N_0w ; N_0p ; N_1wp ; N_1w ; N_1p ; N_2wp ; N_2w ; N_2p ;

from word pairs

 S_0wpN_0wp ; S_0wpN_0w ; S_0wN_0wp ; S_0wpN_0p ; S_0pN_0wp ; S_0wN_0w ; S_0pN_0p

 N_0pN_1p

from three words

 $N_0pN_1pN_2p; S_0pN_0pN_1p; S_{0h}pS_0pN_0p; S_0pS_{0l}pN_0p; S_0pS_{0r}pN_0p; S_0pN_0pN_0lp$

Table 1: Baseline feature templates. w – word; p – POS-tag.

distance

 S_0wd ; S_0pd ; N_0wd ; N_0pd ;

 S_0wN_0wd ; S_0pN_0pd ;

valency

 S_0wv_r ; S_0pv_r ; S_0wv_l ; S_0pv_l ; N_0wv_l ; N_0pv_l ;

unigrams

 $S_{0h}w; S_{0h}p; S_{0l}i; S_{0l}w; S_{0l}p; S_{0l}l;$

 $S_{0r}w$; $S_{0r}p$; $S_{0r}l$; $N_{0l}w$; $N_{0l}p$; $N_{0l}l$;

third-order

 $S_{0h2}w$; $S_{0h2}p$; $S_{0h}l$; $S_{0l2}w$; $S_{0l2}p$; $S_{0l2}l$;

 $S_{0r2}w$; $S_{0r2}p$; $S_{0r2}l$; $N_{0l2}w$; $N_{0l2}p$; $N_{0l2}l$;

 $S_{0}pS_{0l}pS_{0l2}p; S_{0}pS_{0r}pS_{0r2}p;$

 $S_0pS_{0h}pS_{0h2}p; N_0pN_{0l}pN_{0l2}p;$

label set

 S_0ws_r ; S_0ps_r ; S_0ws_l ; S_0ps_l ; N_0ws_l ; N_0ps_l ;

Table 2: New feature templates.

w – word; p – POS-tag; v_l , v_r – valency; l – dependency label, s_l , s_r – labelset.

Constituency Parsing

Constituency Parsing

- Chart-based
 - E.g. Cocke—Younger—Kasami algorithm (CYK or CKY)
 - A kind of Dynamic Programming

fish people fish tanks

PCFG

Rule Prob θ_i	
$S \rightarrow NP VP$	θ_0
$NP \rightarrow NP NP$	θ_1
$N \rightarrow fish$	θ_{42}
$N \rightarrow people$	θ_{43}
$V \rightarrow fish$	θ_{44}
	3

CKY Parsing Algorithm

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$.
Initialization:

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i,i,X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- For $l = 1 \dots (n-1)$
 - For i = 1 ... (n l)
 - * Set j = i + l
 - * For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X o YZ \in R, \ s \in \{i...(j-1)\}}} (q(X o YZ) imes \pi(i,s,Y) imes \pi(s+1,j,Z))$$

and

$$bp(i,j,X) = \arg\max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

Output: Return $\pi(1, n, S) = \max_{t \in \mathcal{T}(s)} p(t)$, and backpointers bp which allow recovery of $\max_{t \in \mathcal{T}(s)} p(t)$.

Summarization

Classical NLP Methods

Problem		Model	Decoding	NLP Tasks	
Sequence Labeling		CRF	Dynamic Programming	POS tagging, Word Segmentation, NER, SRL, CCG Supertagging	
Parsing	Dependency	Transition-based	Greedy/Beam Search	Dependency Parsing	
		Graph-based	Dynamic Programming		
	Constituency	Chart-based	Dynamic Programming	Constituency Parsing	

Lots of feature engineering work!