
Deep Learning and Lexical, Syntactic
and Semantic Analysis

Wanxiang Che and Yue Zhang
2016-10

Part 2: Introduction to
Deep	Learning

Part 2.1: Deep	Learning Background

What	is	Machine	Learning?

• From	Data	to	Knowledge

Input
Algorithm

Output

Traditional Program

Input
Output

“Algorithm”

ML Program

A	Standard	Example	of	ML

• The	MNIST	(Modified	NIST)	database	of	
hand-written	digits	recognition	
– Publicly	available
– A	huge	amount	about	how	well	various	ML	
methods	do	on	it

– 60,000	+ 10,000 hand-written	digits	(28x28	
pixels	each)

Very	hard	to	say	what	makes	a	2								

Traditional Model	(before	2012)

• Fixed/engineered	features	+	trainable	classifier (分类器)
– Designing	a	feature	extractor	requires	considerable	efforts	by	
experts

SIFT																									GIST														Shape	context

Deep	Learning (after	2012)

• Learning	Hierarchical	Representations
• DEEP	means	more	than	one	stage	of	non-linear	feature	
transformation	

Deep	Learning	Architecture	

Deep	Learning	is	Not	New

• 1980s	technology	(Neural	Networks)

About	Neural	Networks

• Pros
– Simple	to	learn	p(y|x)
– Results	OK	for	shallow	nets

• Cons
– Does	not	learn	p(x)
– Trouble	with	>	3	layers
– Overfitts
– Slow	to	train

Deep	Learning	beats	NN

• Pros
– Simple	to	learn	p(y|x)
– Results	OK for	shallow	nets

• Cons
– Does	not	learn	p(x)
– Trouble	with	>	3	layers
– Overfitts
– Slow	to	train

Unsupervised	feature	
learning:	RMBs,	DAEs,	

…

• Dropout
• Maxout
• Stochastic	Pooling

GPU

• New	activation	
functions:	ReLU,	…

• Gated	mechanism

Results	on	MNIST

• Naïve	Neural	Network
– 96.59%

• SVM	(default	settings	for	libsvm)
– 94.35%

• Optimal	SVM	[Andreas	Mueller]
– 98.56%

• The	state	of	the	art:	Convolutional	NN	(2013)
– 99.79%

Deep	Learning	Wins

9.	MICCAI	2013	Grand	Challenge	on	Mitosis	Detection	
8.	ICPR	2012	Contest	on	Mitosis	Detection	in	Breast	Cancer	Histological	Images	
7.	ISBI	2012	Brain	Image	Segmentation	Challenge	(with	superhuman	pixel	error	
rate)	
6.	IJCNN	2011	Traffic	Sign	Recognition	Competition	(only	our	method	achieved	
superhuman	results)	
5.	ICDAR	2011	offline	Chinese	Handwriting	Competition	
4.	Online	German	Traffic	Sign	Recognition	Contest	
3.	ICDAR	2009	Arabic	Connected	Handwriting	Competition	
2.	ICDAR	2009	Handwritten	Farsi/Arabic	Character	Recognition	Competition	
1.	ICDAR	2009	French	Connected	Handwriting	Competition.	Compare	the	
overview	page	on	handwriting	recognition.
• http://people.idsia.ch/~juergen/deeplearning.html

Deep	Learning	for	Speech	Recognition

Deep	Learning	for	NLP

Monolingual
Data

Multi-lingual
Data

Multi-modal
Data

Big Data

Deep
Learning

我

喜欢

红

苹果

我

喜欢

红

苹果

我

喜欢

红

苹果

Recurrent NN Convolutional NN Recursive NN

Semantic
Vector
Space

Applicati
ons

QAPOS tagging Parsing

CaptionMT Dialog MCTest

Word Seg
…

Part 2.2: Feedforward Neural Networks

The	Traditional	Paradigm	for	ML

1. Convert	the	raw	input	vector	into	a	vector	of	feature	
activations
– Use	hand-written	programs	based	on	common-sense	to	define	the	

features
2. Learn	how	to	weight	each	of	the	feature	activations	to	get	a	

single	scalar	quantity
3. If	this	quantity	is	above	some	threshold,	decide	that	the	input	

vector	is	a	positive	example	of	the	target	class

feature units

decision unit

input units

hand-coded
programs

learned weights

The	Standard	Perceptron	Architecture

IPhone is very good .

good very/good very …

>5?

0.8 0.9 0.1 …

The	Limitations	of	Perceptrons

• The	hand-coded	features
– Great	influence	on	the	performance
– Need	lots	of	cost	to	find	suitable	features

• A	linear	classifier	with	a	hyperplane
– Cannot	separate	non-linear	data,	such	as	
XOR	function	cannot	be	learned	by	a	
single-layer	perceptron

0,1

0,0 1,0

1,1

The positive and negative cases
cannot be separated by a plane

Learning	with	Non-linear	Hidden	Layers

Feedforward	Neural	Networks

• The	information	is	propagated	from	
the	inputs	to	the	outputs

• Time	has	no	role	(NO	cycle	between	
outputs	and	inputs)

• Multi-layer	Perceptron	(MLP)?
• Learning	the	weights	of	hidden	units	

is	equivalent	to	learning	features	
• Networks	without	hidden	layers	are	

very	limited	in	the	input-output	
mappings
– More	layers	of	linear	units	do	not	

help.	Its	still	linear
– Fixed	output	non-linearities are	not	

enough

x1 x2 xn…..

1st hidden
layer

2nd hidden
layer

Output layer

Multiple	Layer Neural	Networks

• What	are	those	hidden	
neurons	doing?
– Maybe	represent	
outlines

General	Optimizing	(Learning)	Algorithms

• Gradient	Descent

• Stochastic	Gradient	Descent	(SGD)	
– Minibatch SGD	(m	>	1),	Online	GD	(m	=	1)

Computational/Flow Graphs

• Describing	Mathematical	Expressions
• For	example

– e	=	(a	+	b)	*	(b	+	1)
• c	=	a	+	b,	d	=	b	+	1,	e	=	c	*	d

– If	a	=	2,	b	=	1

Derivatives	on	Computational	Graphs

Computational	Graph	Backward	Pass	(Backpropagation)

An	FNN	POS	Tagger

Part 2.3: Word Embeddings

Typical Approaches for Word Representation

• 1-hot representation	(orthogonality)
– bag-of-word model

sun
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …]

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …]

star

sim(star, sun) = 0

Distributed	Word	Representation

• Each	word	is	associated	with	a	low-dimension	(compressed,	
50-1000),	density (non-sparse)	and	real (continuous)	vector	
(word	embedding)
– Learning	word	vectors	through	supervisedmodels

• Nature
– Semantic	similarity	as	vector	similarity

How	to	obtain	Word	Embedding

Neural	Network	Language	Models

• Neural	Network	Language	Models	(NNLM)
– Feed	Forward	(Bengio et	al.	2003)

• Maximum-Likelihood Estimation
• Back-propagation
• Input: (𝑛 − 1) embeddings

Predict Word Vector Directly

• SENNA (Collobert and Weston,	2008)
• word2vec	(Mikolov et	al.	2013)

Word2vec:	CBOW	(Continuous	Bag-of-Word)

• Add	inputs	from	words	within	short	window	to	predict	the	
current	word

• The	weights	for	different	positions	are	shared
• Computationally	much	more	efficient	than	normal	NNLM
• The	hidden	layer	is	just	linear
• Each	word	is	an	embedding	v(w)
• Each	context	is	an	embedding	v’(c)

Word2vec:	Skip-Gram

• Predicting	surrounding	words	using	the	
current	word

• Similar	performance	with	CBOW
• Each	word	is	an	embedding	v(w)
• Each	context	is	an	embedding	v’(c)

Word2vec	Training

• SGD	+	backpropagation
• Most	of	the	computational	cost	is	a	function	of	the	size	
of	the	vocabulary	(millions)

• Training	accelerating
– Negative	Sampling

• Mikolov et	al.	2013
– Hierarchical	Decomposition

• Morin	and	Bengio 2005.	Mnih and	Hinton	2008.	Mikolov et	al.	2013
– Graph	Processing	Unit (GPU)

Word	Analogy	

Part 2.4: Recurrent and Other
Neural Networks

Language	Models

• A	language	model	computes	a	probability	for	a	sequence	of	
word:	𝑃(𝑤(,⋯𝑤+) or	predicts	a	probability	for	the	next	word:	
𝑃(𝑤+,(|𝑤(,⋯𝑤+)

• Useful	for	machine	translation,	speech	recognition,	and	so	on
• Word	ordering

• P(the	cat	is	small)	>	P(small	the	is	cat)
• Word	choice

• P(there	are	four cats)	>	P(there	are	for cats)

Traditional	Language	Models

• An	incorrect	but	necessary	Markov	assumption!	
• Probability	is	usually	conditioned	on	window	of	n previous	words
• 𝑃 𝑤(,⋯𝑤+ = ∏ 𝑃(𝑤0|𝑤(,⋯ ,𝑤01() ≈3

04(∏ 𝑃(𝑤0|𝑤01(+1(),⋯ ,𝑤01()3
04(

• How	to	estimate	probabilities
• 𝑝 𝑤6 𝑤(= 789+:(;<,;=)

789+:(;<)
𝑝 𝑤> 𝑤(, 𝑤6 = 789+:(;<,;=,;?)

789+:(;<,;=)

• Performance	improves	with	keeping	around	higher	n-grams	counts	and	
doing	smoothing,	such	as	backoff (e.g.	if	4-gram	not	found,	try	3-gram,	etc)

• Disadvantages
• There	are	A	LOT	of	n-grams!
• Cannot	see	too	long	history

• P(坐/作了一整天的火车/作业)

Recurrent	Neural	Networks	(RNNs)

• Condition	the	neural	network	on	all	previous	inputs
• RAM	requirement	only	scales	with	number	of	inputs

W1 W1

ht ht+1ht-1

yt-1 yt yt+1

xt-1 xt xt+1

W1

W2 W2W2

W3 W3W3

Recurrent	Neural	Networks (RNNs)

• At	a	single	time	step	t
• ℎ: = tanh(𝑊(ℎ:1(+𝑊6𝑥:)
• 𝑦I: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊>ℎ:)

ht …ht-1

𝑦I:

xt

W1

W2

W3

ht

𝑦I:

xt

W1

W2

W3

W1

Training	RNNs	is	hard

• Ideally	inputs	from	many	time	steps	ago	can	modify	output	y
• For	example,	with	2	time	steps

ht ht+1ht-1

yt-1 yt yt+1

xt-1 xt xt+1

W1 W1

W2 W2

W3 W3

BackPropagation Through	Time	(BPTT)

• Total	error	is	the	sum	of	each	error	at	time	step	t
• PQ
PR

= ∑ PQT
PR

U
:4(

• PQT
PR? =

PQT
PVT

PVT
PR? is	easy	to	be	calculated

• But	to	calculate		 PQT
PR< =

PQT
PVT

PVT
PXT

PXT
PR< is	hard	(also	for	𝑊6)

• Because	ℎ: = tanh(𝑊(ℎ:1(+𝑊6𝑥:) depends	on	ℎ:1(,	which	
depends	on	𝑊(and	ℎ:16,	and	so	on.	

• So	 PQT
PR< = ∑ PQT

PVT

PVT
PXT

PXT
PXY

PXY
PR<

:
Z4(

ht

𝑦I:

xt

W1

W2

W3

The vanishing	gradient	problem

• PQT
PR

= ∑ PQT
PVT

PVT
PXT

PXT
PXY

PXY
PR

:
Z4(,	ℎ: = tanh(𝑊(ℎ:1(+𝑊6𝑥:)

• PXT
PXY

= ∏ PX[
PX[\<

:
]4Z,(= ∏ 𝑊(diag[tanh′(⋯)]:

]4Z,(

• PXT
PXT\<

≤ 𝛾 𝑊(≤ 𝛾𝜆(
• where 𝛾 is bound diag[tanh′(⋯)] , 𝜆(is the largest singular value of𝑊(

• PXT
PXY

≤ 𝛾𝜆(:1Zà0,	if	𝛾𝜆(< 1

• This	can	become	very	small	or	very	large	quickly	à Vanishing	or	
exploding	gradient

• Trick	for	exploding	gradient:	clipping	trick	(set	a	threshold)

A	“solution”

• Intuition
• Ensure	𝛾𝜆(≥ 1à to	prevent	vanishing	gradients

•So	…	
• Proper	initialization	of	the	W	
• To	use	ReLU instead	of	tanh or	sigmoid	activation	
functions

A	better	“solution”

• Recall	the	original	transition	equation
• ℎ: = tanh(𝑊(ℎ:1(+𝑊6𝑥:)

• We	can	instead	update	the	state	additively
• 𝑢: = tanh(𝑊(ℎ:1(+𝑊6𝑥:)
• ℎ: = ℎ:1(+ 𝑢:
• then,	 PXT

PXT\<
= 1 + P9T

PXT\<
≥ 1

• On	the	other	hand
• ℎ: = ℎ:1(+ 𝑢: = ℎ:16 + 𝑢:1(+ 𝑢: = ⋯

ht …ht-1

𝑦I:

xt

…

…

A	better	“solution” (cont.)

• Interpolate	between	old	state	and	new	state	(“choosing	to	forget”)
• 𝑓: = 𝜎 𝑊k𝑥: + 𝑈kℎ:1(
• ℎ: = 𝑓: ⊙ ℎ:1(+ (1 − 𝑓:) ⊙ 𝑢:

• Introduce	a	separate	input	gate	𝑖:
• 𝑖: = 𝜎 𝑊0𝑥: + 𝑈0ℎ:1(
• ℎ: = 𝑓: ⊙ ℎ:1(+ 𝑖: ⊙ 𝑢:

• Selectively	expose	memory	cell	𝑐: with	an	output	gate	𝑜:
• 𝑜: = 𝜎 𝑊8𝑥: + 𝑈8ℎ:1(
• 𝑐: = 𝑓: ⊙ 𝑐:1(+ 𝑖: ⊙ 𝑢:
• ℎ: = 𝑜: ⊙ tanh	(𝑐:)

Long	Short-Term	Memory	(LSTM)

• Hochreiter & Schmidhuber,	1997
• LSTM	=	additive	updates	+	gating

Xt

+ + + +
0 1 2 3

ht-1

Ct-1 Ct

ht

�

�

+

�σ σ σtanh

tanh

ht

Gated	Recurrent	Unites,	GRU	(Cho	et	al.	2014)

• Main	ideas
• Keep	around	memories	to	capture	long	distance	dependencies
• Allow	error	messages	to	flow	at	different	strengths	depending	on	the	inputs

• Update	gate
• Based	on	current	input	and	hidden	state
• 𝑧: = 𝜎 𝑊q𝑥: + 𝑈qℎ:1(

• Reset	gate
• Similarly	but	with	different	weights
• 𝑟: = 𝜎(𝑊s𝑥: + 𝑈sℎ:1()

GRU

• New	memory	content
• ℎt: = tanh(𝑊𝑥: + 𝑟: ⊙ 𝑈ℎ:1()
• Update	gate	z controls	how	much	of	past	state	should	matter	now

• If	z closed	to	1,	then	we	can	copy	information	in	that	unit	through	many	time	steps	à
less	vanishing	gradient!	

• If	reset	gate	r unit	is	close	to	0,	then	this	ignores	previous	memory	and	only	
stores	the	new	input	information	à allows	model	to	drop	information	that	is	
irrelevant	in	the	future	

• Units	with	long	term	dependencies	have	active	update	gates	z
• Units	with	short-term	dependencies	often	have	rest	gates	r very	active	

• Final	memory	at	time	step	combines	current	and	previous	time	steps
• ℎ: = 𝑧: ⊙ ℎ:1(+ (1 − 𝑧:) ⊙ ℎt

LSTM	vs.	GRU

• No	clear	winner!
• Tuning	hyperparameters like	layer	size	is	probably	more	important	
than	picking	the	ideal	architecture

• GRUs	have fewer parameters	and	thus	may	train	a	bit	faster	or	need	
less data	to	generalize

• If	you	have	enough	data,	the	greater	expressive	power	of	LSTMs	
may lead	to	better	results.

More	RNNs

• Bidirectional	RNN • Stack Bidirectional	RNN

Tree-LSTMs

• Traditional	Sequential	Composition

• Tree-Structured	Composition

More	Applications	of	RNN

• Neural	Machine	Translation
• Handwriting	Generation
• Image	Caption	Generation
• …...	

Neural	Machine	Translation

• RNN	trained	end-to-end:	encoder-decoder

W1 W1

h2 h3h1

I love you

W2 W2W2

我 ?

Encoder:

Decoder:

This	needs	to	
capture	the	

entire	sentence!

我

Attention	Mechanism	– Scoring

• Bahdanau et	al.	2015

W1 W1

h2 h3h1

I love you

W2 W2W2

我 ?

Encoder:

Decoder:

我

α=score(ℎ:, ℎ{)

0.3 0.6 0.1

ht𝛼

c

Convolution	Neural	Network

CS231n	Convolutional	Neural	Network	for	Visual	Recognition.

Pooling

CNN for NLP

Zhang,	Y.,	&	Wallace,	B.	(2015).	A	Sensitivity	Analysis	of	
(and	Practitioners’	Guide	to)	Convolutional	Neural	
Networks	for	Sentence	Classification.

Recursive	Neural	Network

Socher, R., Manning, C., & Ng, A. (2011). Learning Continuous Phrase Representations and Syntactic Parsing
with Recursive Neural Network. NIPS.

