Deep Learning and Lexical, Syntactic
and Semantic Analysis

Wanxiang Che and Yue Zhang
2016-10

”‘ B AR S BE
Advanced Technology Tutorial

Part 2: Introduction to
Deep Learning

Part 2.1: Deep Learning Background

What is Machine Learning?

* From Data to Knowledge

Input ——

: Output
Algorithm —

Traditional Program

ML Program

A Standard Example of ML

 The MNIST (Modified NIST) database of
hand-written digits recognition
— Publicly available

— A huge amount about how well various ML
methods do on it

— 60,000 + 10,000 hand-written digits (28x28
pixels each)

O

O

)

Q||| e |V s|— |0

A
)
q
S
&
7
g
q

Q0 N | ||en<e VL |~

© N (|| |[UIN)~
© |09\ | | = v | R]|—|O
.ooo\)smtb‘&:bgl

Qo NN e |lslv(S]-IO

<N INn|Evii~Oo
.ooo\zc\wtvk:"b
LN NN =V~ o

Very hard to say what makes a 2

o232 2

5

>

J

36794947659

LZIZINT12379
b8973809497

Traditional Model (before 2012)

* Fixed/engineered features + trainable classifier (77-23%%)

— Designing a feature extractor requires considerable efforts by
experts

hand-crafted A “Simple” Trainable

Feature Extractor Classifier

SIFT GIST Shape context

Deep Learning (after 2012)

e Learning Hierarchical Representations
« DEEP means more than one stage of non-linear feature

transformation —r .
Low-Level| [Mid-Level| |High-Levell | Trainable
—_ p— —
Feature | | Feature | | Feature (lassifier
4 " A

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Ferqus 2013)

Deep Learning Architecture

00
x

5
tated

QOO0 O00COLOO0ODO

i, i1
w—“cat”

OO DO
OttOOOCC’OQ
QOO0 DO0O0

88888888833333833

:

i
:

Deep Learning is Not New

e 1980s technology (Neural Networks)

(label) y
Supervised learning

Given x and vy, learn p(y|x)

Is this photo, x, a “cat”, y?

Neural Network intuition

x (input data)

About Neural Networks

* Pros
— Simple to learn p(y|x)

— Results OK for shallow nets

* Cons
— Does not learn p(x)
— Trouble with > 3 layers
— Overfitts

— Slow to train

Deep Learning beats NN

* Pros
— Simple to learn p(y|x)

— Results OK for shallow nets

Unsupervised feature
learning: RMBs, DAEs,

* New activation
functions: RelU, ...
e Gated mechanism

* Dropout
* Maxout
* Stochastic Pooling

Naive Neural Network

— 96.59%

SVM (default settings for libsvm)

— 94.35%

Results on MINIST

Optimal SVM [Andreas Mueller]

— 98.56%

The state of the art: Convolutional NN (2013)

— 99.79%

0

4

1

?

>

A

}

2

L

Deep Learning Wins

9. MICCAI 2013 Grand Challenge on Mitosis Detection
8. ICPR 2012 Contest on Mitosis Detection in Breast Cancer Histological Images

7.1SBI 2012 Brain Image Segmentation Challenge (with superhuman pixel error
rate)

6. IJCNN 2011 Traffic Sign Recognition Competition (only our method achieved
superhuman results)

5. ICDAR 2011 offline Chinese Handwriting Competition

4. Online German Traffic Sign Recognition Contest

3. ICDAR 2009 Arabic Connected Handwriting Competition

2. ICDAR 2009 Handwritten Farsi/Arabic Character Recognition Competition

1. ICDAR 2009 French Connected Handwriting Competition. Compare the
overview page on handwriting recognition.

* http://people.idsia.ch/~juergen/deeplearning.html

Deep Learning for Speech Recognition

100%a According to Microsoft’s
speech group:

Using DL

10%

4%

2%

1%

v

1990 2000 2010

Applicati
ons

Semantic
Vector
Space

Deep
Learning

Big Data

Recurrent NN

Monolingual
Data

Multi-lingual
Data

Multi-modal
Data

Part 2.2: Feedforward Neural Networks

The Traditional Paradigm for ML

1. Convert the raw input vector into a vector of feature

activations
— Use hand-written programs based on common-sense to define the
features

2. Learn how to weight each of the feature activations to get a
single scalar quantity

3. If this quantity is above some threshold, decide that the input
vector is a positive example of the target class

The Standard Perceptron Architecture

t)

good very/good very ...

hand-coded
programs

@@ @ inputunits IPhone is very good .

decision unit

learned weights

feature units

The Limitations of Perceptrons

* The hand-coded features 0,1 1.1

— Great influence on the performance
— Need lots of cost to find suitable features

* Alinear classifier with a hyperplane Weig

— Cannot separate non-linear data, such as
XOR function cannot be learned by a
single-layer perceptron 0,0 1.0

The positive and negative cases
cannot be separated by a plane

Learning with Non-linear Hidden Layers

_ Original x Space Learned h Space
0 “ 1 1 : 1 , r 1
W = Y H o | i}
| 1 1
w -
OSONO 0
C = .
w 9
L 3 1
ojcRo Nk TN R
1 1 | 1 1 |
’ | 1

flz;W,c,w,b) =w' max{0, W'z +c} +b.

Output layer

Feedforward Neural Networks

XN

The information is propagated from
the inputs to the outputs

Time has no role (NO cycle between
outputs and inputs)

Multi-layer Perceptron (MLP)?

Learning the weights of hidden units
is equivalent to learning features
Networks without hidden layers are
very limited in the input-output
mappings
— More layers of linear units do not
help. Its still linear

— Fixed output non-linearities are not
enough

Multiple Layer Neural Networks

hidden layer
(nn = 15 neurons)

What are those hidden
neurons do

?

output layver

ing

outlines

=
C
Q
(%2]
Q
el
o
Q
o
()]

o)
>

=

_

GOOE

l.?.

%@?

A

A
@
m,%%.

W

»

i)

QOO D DD

AW
..%%@&&\\m\‘\\\\\\n\\\\\
MADEAAALA

AR

&

7

input layver
(T84 neurons)

Ny

General Optimizing (Learning) Algorithms

* Gradient Descent
0<—0+6V92L (2 0), 4" : 0)

e Stochastic Gradlent Descent (SGD)
— Minibatch SGD (m > 1), Online GD (m = 1)

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate €.
Require: Initial parameter 6
while stopping criterion not met do
Sample a minibatch of m examples from the training set {x!),..., (™) } with
corresponding targets 1(%).
Compute gradient estimate: g < +;ll Vo >_; L(f(z);0),y®)
Apply update: @ <+ 0@ —¢eg
end while

Computational/Flow Graphs

* Describing Mathematical Expressions

* For example

—e=(a+b)*(b+1)
ec=a+b,d=b+1,e=c*d 5= (5

—Ifa=2,b=1 /// \\\

Derivatives on Computational Graphs

e = cxd
e=256

Oe Oe
9c 2 9d >

N L Dol

oc
— - = 1
! o

@ B e

Computational Graph Backward Pass (Backpropagation)

1: d(N)(—l T
2: fori = N-1to 1 do o/ §=1
3 d(i) < Djenn d0) - 57 — \
jen(?) 01 %:2 = =3
7 \8
(&
p) X Ka ad X
8—2:1 o =1 o =1
7 N\ /7
e e

(a)

x 17 x 17

“the”

Part 2.3: Word Embeddings

Typical Approaches for Word Representation

* 1-hot representation (orthogonality)

— bag-of-word model

star [0.0,0,0,0,0,0,0,1,0,0,0,0, ...]
sun [0.0,000,0,0,1,0,0,0,0,0,...]

sim(star, sun) = 0 o

Distributed Word Representation

e Each word is associated with a low-dimension (compressed,
50-1000), density (non-sparse) and real (continuous) vector
(word embedding)

— Learning word vectors through supervised models

* Nature
— Semantic similarity as vector similarity

s

N PROIGIT>

How to obtain Word Embedding

& RNNLM F
= (Mikolov et al, 201M) ()
 NNLM -
LSA . (Bengio et al, 2003) Word2vec
(Deerwester et al,1990) : (Collobert et al, 20m) (Mikolov et al, 2013)
| ! | | . >
] |] | i 1
LDA HLBL GloVe
(Blei et al, 2003)§ (Minh and Hinton, 2009) (Pennington et al, 2014)

LR-MVL

(Dhillon et al, 20m)

Neural Network Language Models

* Neural Network Language Models (NNLM)
— Feed Forward (Bengio et al. 2003)
i-th output = P(w, = i | context) « Maximum-Likelihood Estimation

normalized exponcatial « Back-propagation
— * Input: (n — 1) embeddings

W e

P(u’t = k|u,’t_n+1 g s e .u’t_l) = -~
tanh : eal
Ceeooe o) I=1"
!
h (n—1)d
C,. Cy, . .. ajp = bk -+ E M/kzj tanh(c.i -+ I/ZJQL'J)
(e o) ... (ee . o) (ee o) i1 j=1

Table .. Matrix (.
::: ‘(k'~ up wssssesssssssscsssscfecte \I }\ ,r,‘,‘,:l| \I\,::r:',,\l “.” ’
Wy n+1 T Wy L(H) - : :]'Og P(u’t |u,t_'n+1 u,t_]-)
t

Predict Word Vector Directly

 SENNA (Collobert and Weston, 2008)
e word2vec (Mikolov et al. 2013)

| got the shotgun. You got the briefcase.

Word2vec: CBOW (Continuous Bag-of-Word)

Add inputs from words within short window to predict the

Current Word INPUT PROJECTION OUTPUT
The weights for different positions are shared w2

Computationally much more efficient than normal NNLM

The hidden layer is just linear

w(t)

Each word is an embedding v(w)

w(t-1) \
Each context is an embedding v’(c) 7

w(t+1)

w(t+2)

r(c) =v'(c_g) + v (c_1) +v'(c1) + v'(ca)

CBOW

exp(r(c) - v(w))

plow) [7)) = D €Xp(r(c) - v(w*))

Word2vec: Skip-Gram

Predicting surrounding words using the INPUT PROJECTION OUTPUT
current word

Similar performance with CBOW

Each word is an embedding v(w)

Each context is an embedding v’(c) \
Z log p(v'(c) | v(w)) \

Skip-gram

eXI)("v’(C) . v(w
3 exp(v/(c*) -

P () | o(w)) =

~— | =
~
~~ .
~
<
—
S’

Word2vec Training

* SGD + backpropagation
* Most of the computational cost is a function of the size
of the vocabulary (millions)

* Training accelerating
— Negative Sampling
* Mikolov et al. 2013

— Hierarchical Decomposition
* Morin and Bengio 2005. Mnih and Hinton 2008. Mikolov et al. 2013

— Graph Processing Unit (GPU)

Word Analogy

v(king) — v(queen) = v(man) — v(woman)

WOMAN UEENS
AUNT Q

MAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

Part 2.4: Recurrent and Other
Neural Networks

Language Models

* A language model computes a probability for a sequence of
word: P(w4, :-- wy,) or predicts a probability for the next word:

P(Wpiq|wy, - wy)
* Useful for machine translation, speech recognition, and so on
* Word ordering

* P(the cat is small) > P(small the is cat)

* Word choice
* P(there are four cats) > P(there are for cats)

Traditional Language Models

* An incorrect but necessary Markov assumption!
* Probability is usually conditioned on window of n previous words
* P(wy, - wy) = [[i2 P(wi|wy, -, wi—q) =12 P(Wi|Wi—(n—1)»’”»Wi—1)

* How to estimate probabilities

. p(W |W) __count(wq,w3) p(W |W W) __count(wq,wz,w3)
2 1) — 3 1»W2) —

count(wq)

* Performance improves with keeping around higher n-grams counts and
doing smoothing, such as backoff (e.g. if 4-gram not found, try 3-gram, etc)

count(wq,wy)

* Disadvantages
e There are A LOT of n-grams!

e Cannot see too long history
o P(AE/ME T BRI KE/ME)

Recurrent Neural Networks (RNNs)

e Condition the neural network on all previous inputs

* RAM requirement only scales with number of inputs

Vi1 Vi Vi1
hl’-l ht ht+1

Wl Wl Wl

@

e

ENCYYY
ANCYYY

(ovf e0) (oM: e0) CQM: e0)

Xt-1 Xt Xt+1

Recurrent Neural Networks (RNNs)

* At a single time step t
¢ ht = tanh(Wlht_l + szt)
* 9. = softmax(W3h;)

Training RNNs is hard

* |deally inputs from many time steps ago can modify output y

* For example, with 2 time steps

J\yt-l
hes

Wl

J

@

ENCYYY

[

t

h;

(e000) (e000) (0000)

Xe1

Xt

Xt+1

BackPropagation Through Time (BPTT)

* Total error is the sum of each error at time step t

OE T 6Et
o — — —_
ow Li=1 ow

. 6Et _ aEt ayt
w3 9y, ows3

is easy to be calculated

0E; _ OE;dy; dhy

oWl dysdhs 0wl

* Because h, = tanh(W'h,_; + W?x,) depends on h,_4, which
depends on W1 and h,_,, and so on.

.o OBt _ - ZEt dy: Oh¢ ahk1

Yt Ohy dhy OW

* But to calculate is hard (also for W?)

ow1l

The vanishing gradient problem

6Et aEt ayt 6ht ahk h 1 2
 h, = tanh(W-h,_ W<*x
= Y= 19y, aheonglow’ ™ (t-1 t)

6ht Tt ah] _ 1
il | e i=k+1 W'diag[tanh'(--)]
oh
e[s viwtl < vy
t—-1

 where y is bound ||diag[tanh’(:-+)]||, A,is the largest singular value of W1
dh
tH < (yA)EK>0,ifyA, < 1

. ThIS can become very small or very large quickly = Vanishing or
exploding gradient
* Trick for exploding gradient: clipping trick (set a threshold)

A “solution”

* Intuition
* Ensure yA; = 1 = to prevent vanishing gradients

*SO ...
* Proper initialization of the W

* To use RelLU instead of tanh or sigmoid activation
functions

A better “solution”

 Recall the original transition equation
* hy = tanh(Wlh,_; + W2x,)

* We can instead update the state additively
e u, = tanh(Wlh,_; + W?x,)
* hy = hy_q + Uy

. one || _ ”
then, ”aht_1 =1+
* On the other hand

b ht - ht—l + ut - ht—Z 4+ ut_l + ut —

6ut

>
Oht—q 1

A better “solution” (cont.)

* Interpolate between old state and new state (“choosing to forget”)
* fr = O'(fot + Ufht_l)
*hy =fiOh1+A—-f) Ou
* Introduce a separate input gate i,
* i, =o(Wix, + Uth;,_,)
*he=fi Ohiog +i Ou
* Selectively expose memory cell ¢; with an output gate o,
0 =0(W°x; +U°h;_q)

¢ =fr Ocoq Hir Ou
* hy = o; O tanh(c;)

Long Short-Term Memory (LSTM)

u; = tanh (Why—1 + Vay) * Hochreiter & Schmidhuber, 1997
fi = sigmoid (Wyhe—y + Vy2t) o | STM = additive updates + gating
iy = sigmoid (W;hi—1 + Viaxy)

o = sigmoid (Wohi—1 + Voay)
Ct = ft © i1 + i © uy

ht = o ® tanh(c¢;) @
yr = Uy

O

Gated Recurrent Unites, GRU (Cho et al. 2014)

* Main ideas
» Keep around memories to capture long distance dependencies
* Allow error messages to flow at different strengths depending on the inputs

* Update gate
* Based on current input and hidden state
* Zt = O-(szt + Uzht_l)

* Reset gate

 Similarly but with different weights
* Tt = O-(Wrxt + Urht_l)

GRU z

* New memory content < > o g

S
A

® i:lt - tanh(Wxt + T‘t @ Uht—l)
Update gate z controls how much of past state should matter now

* If zclosed to 1, then we can copy information in that unit through many time steps 2>
less vanishing gradient!

If reset gate r unit is close to 0, then this ignores previous memory and only
stores the new input information = allows model to drop information that is
irrelevant in the future

Units with long term dependencies have active update gates z
Units with short-term dependencies often have rest gates r very active

* Final memory at time step combines current and previous time steps
*hi=2Qhi1+(1—2)Oh

LSTM vs. GRU

* No clear winner!

* Tuning hyperparameters like layer size is probably more important
than picking the ideal architecture

* GRUs have fewer parameters and thus may train a bit faster or need
less data to generalize

* If you have enough data, the greater expressive power of LSTMs
may lead to better results.

More RNNs

e Bidirectional RNN e Stack Bidirectional RNN

Y e o ° °

ho; o o o o °

]

X e o . .

Tree-LSTMs

* Traditional Sequential Composition

o

T

the

» O » O » O » O o)

cat climbs the tall tree
* Tree-Structured Composition
[0}
\ -
Ao\
1)
®
[0} [0}

N AN

cat climbs the tall tree

the

More Applications of RNN

* Neural Machine Translation
* Handwriting Generation
* Image Caption Generation

Neural Machine Translation

* RNN trained end-to-end: encoder-decoder

K,

Decoder: /[\
O

O

O

NI

Encoder:
w1 w1

(e00@@) (om;oo) axrxy

love you

®0)

This needs to
capture the
entire sentence!

—.(0000)
—(0000)

— % —(0000)— -~

Attention Mechanism — Scoring

7N

@ I
e Bahdanau et al. 2015 ®

@

([
a
Encoder: 0.3 .6 0.1
h h

SN

;
I

w2 W2 W2 a=score(ht, h%)
(ee00) (e000) (0000)
I

love you

Convolution Neural Network

(Y
(=)
=

(=)
=
(=)

=
o
=

o O[O |[O |-
= O[O [|-
N S N
olrkr|rk|rk|O
O(O(R|O|O

Convolved

image Feature

CS231n Convolutional Neural Network for Visual Recognition.

Single depth slice

I 2 | 4
max pool with 2x2 filters
SElmon 7 | 8 and stride 2
3 | 2 i
1| 2 S
7 >

Pooling

CNN for NLP

+ activation function

Lﬁmm+ 1-max softmax function

\ olin regularization

! pooling y /I inthislayer
N 3 region sizes: (2,3,4) 2 feature Y
Sentence matrix 2 filters for each region maps for 6 univariate 2 classes
7x5 size each vectors :]
totally 6 filters region size concatenated
together to form a

single feature
vector
— > \
d=5
|
like

this
movie
very
much
|

B

“zﬁg/'

-~I;
\

— Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of
|| (and Practitioners’ Guide to) Convolutional Neural
— Networks for Sentence Classification.

Recursive Neural Network

CQ OO Q O O) y1=tanh(W[x1;y2] + b)

(Q O Q OO0 O)y2 tanh(W[x2:y1] + b)

(O O O O O O) y1 = tanh(W[x3;x4] + b)

(OCO0000) (0COOO0O0) (OQOQQQ) (OQOOQQ)
x1 X2 x3 x4

Socher, R., Manning, C., & Ng, A. (2011). Learning Continuous Phrase Representations and Syntactic Parsing
with Recursive Neural Network. NIPS.

