Deep Learning and Lexical, Syntactic and Semantic Analysis

Wanxiang Che and Yue Zhang 2016-10

Part 2: Introduction to Deep Learning

Part 2.1: Deep Learning Background

What is Machine Learning?

From Data to Knowledge

A Standard Example of ML

- The MNIST (Modified NIST) database of hand-written digits recognition
 - Publicly available
 - A huge amount about how well various ML methods do on it
 - 60,000 + 10,000 hand-written digits (28x28 pixels each)

Very hard to say what makes a 2

Traditional Model (before 2012)

- Fixed/engineered features + trainable classifier (分类器)
 - Designing a feature extractor requires considerable efforts by experts

Deep Learning (after 2012)

Learning Hierarchical Representations

DEEP means more than one stage of non-linear feature

transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Deep Learning Architecture

Deep Learning is Not New

1980s technology (Neural Networks)

Supervised learning

- Given x and y, learn p(y|x)
- Is this photo, x, a "cat", y?

About Neural Networks

- Pros
 - Simple to learn p(y|x)
 - Results OK for shallow nets
- Cons
 - Does not learn p(x)
 - Trouble with > 3 layers
 - Overfitts
 - Slow to train

Deep Learning beats NN

- Pros
 - Simple to learn p(y|x)
 - Results OK for shallow nets

Results on MNIST

- Naïve Neural Network
 - 96.59%
- SVM (default settings for libsvm)
 - -94.35%
- Optimal SVM [Andreas Mueller]
 - **98.56%**
- The state of the art: Convolutional NN (2013)
 - 99.79%

Deep Learning Wins

- 9. MICCAI 2013 Grand Challenge on Mitosis Detection
- 8. ICPR 2012 Contest on Mitosis Detection in Breast Cancer Histological Images
- 7. ISBI 2012 Brain Image Segmentation Challenge (with superhuman pixel error rate)
- 6. IJCNN 2011 Traffic Sign Recognition Competition (only our method achieved superhuman results)
- 5. ICDAR 2011 offline Chinese Handwriting Competition
- 4. Online German Traffic Sign Recognition Contest
- 3. ICDAR 2009 Arabic Connected Handwriting Competition
- 2. ICDAR 2009 Handwritten Farsi/Arabic Character Recognition Competition
- 1. ICDAR 2009 French Connected Handwriting Competition. Compare the overview page on handwriting recognition.
- http://people.idsia.ch/~juergen/deeplearning.html

Deep Learning for Speech Recognition

Deep Learning for NLP

Part 2.2: Feedforward Neural Networks

The Traditional Paradigm for ML

- 1. Convert the raw input vector into a vector of feature activations
 - Use hand-written programs based on common-sense to define the features
- 2. Learn how to weight each of the feature activations to get a single scalar quantity
- 3. If this quantity is above some threshold, decide that the input vector is a positive example of the target class

The Standard Perceptron Architecture

The Limitations of Perceptrons

The hand-coded features

- Great influence on the performance
- Need lots of cost to find suitable features
- A linear classifier with a hyperplane
 - Cannot separate non-linear data, such as XOR function cannot be learned by a single-layer perceptron

The positive and negative cases cannot be separated by a plane

Learning with Non-linear Hidden Layers

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$$

Feedforward Neural Networks

- The information is propagated from the inputs to the outputs
- Time has no role (NO cycle between outputs and inputs)
- Multi-layer Perceptron (MLP)?
- Learning the weights of hidden units is equivalent to learning features
- Networks without hidden layers are very limited in the input-output mappings
 - More layers of linear units do not help. Its still linear
 - Fixed output non-linearities are not enough

Multiple Layer Neural Networks

- What are those hidden neurons doing?
 - Maybe represent outlines

General Optimizing (Learning) Algorithms

Gradient Descent

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \epsilon \nabla_{\boldsymbol{\theta}} \sum_{t} L(f(\boldsymbol{x}^{(t)}; \boldsymbol{\theta}), \boldsymbol{y}^{(t)}; \boldsymbol{\theta})$$

- Stochastic Gradient Descent (SGD)
 - Minibatch SGD (m > 1), Online GD (m = 1)

```
Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate \epsilon_k.

Require: Initial parameter \boldsymbol{\theta}

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}

end while
```

Computational/Flow Graphs

- Describing Mathematical Expressions
- For example

$$-e = (a + b) * (b + 1)$$

• $c = a + b, d = b + 1, e = c * d$
 $- If a = 2, b = 1$

Derivatives on Computational Graphs

Computational Graph Backward Pass (Backpropagation)

An FNN POS Tagger

 1×1

Part 2.3: Word Embeddings

Typical Approaches for Word Representation

- 1-hot representation (orthogonality)
 - bag-of-word model

```
star [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ...]

sun [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ...]
```

$$sim(star, sun) = 0$$

Distributed Word Representation

- Each word is associated with a low-dimension (compressed, 50-1000), density (non-sparse) and real (continuous) vector (word embedding)
 - Learning word vectors through supervised models
- Nature
 - Semantic similarity as vector similarity

How to obtain Word Embedding

Neural Network Language Models

- Neural Network Language Models (NNLM)
 - Feed Forward (Bengio et al. 2003)

- Maximum-Likelihood Estimation
- Back-propagation
- Input: (n-1) embeddings

$$P(w_t = k | w_{t-n+1}, \dots w_{t-1}) = \frac{e^{a_k}}{\sum_{l=1}^{N} e^{a_l}}$$

$$a_k = b_k + \sum_{i=1}^h W_{ki} \tanh(c_i + \sum_{j=1}^{(n-1)d} V_{ij} x_j)$$

$$L(\theta) = \sum_{t} \log P(w_t|w_{t-n+1}, \dots w_{t-1})$$

Predict Word Vector Directly

- SENNA (Collobert and Weston, 2008)
- word2vec (Mikolov et al. 2013)

I got the shotgun. You got the briefcase.

Word2vec: CBOW (Continuous Bag-of-Word)

- Add inputs from words within short window to predict the current word
- · The weights for different positions are shared
- Computationally much more efficient than normal NNLM
- The hidden layer is just linear
- Each word is an embedding v(w)
- Each context is an embedding v'(c)

$$r(c) = v'(c_{-2}) + v'(c_{-1}) + v'(c_1) + v'(c_2)$$

$$p(v(w) \mid r(c)) = \frac{\exp(r(c) \cdot v(w))}{\sum_{w^*} \exp(r(c) \cdot v(w^*))}$$

CBOW

Word2vec: Skip-Gram

- Predicting surrounding words using the current word
- Similar performance with CBOW
- Each word is an embedding v(w)
- Each context is an embedding v'(c)

$$\frac{1}{|\mathcal{C}|} \sum_{(w,c) \in \mathcal{C}} \log p(v'(c) \mid v(w))$$

$$p(v'(c) \mid v(w)) = \frac{\exp(v'(c) \cdot v(w))}{\sum_{c^*} \exp(v'(c^*) \cdot v(w))}$$

Skip-gram

Word2vec Training

- SGD + backpropagation
- Most of the computational cost is a function of the size of the vocabulary (millions)
- Training accelerating
 - Negative Sampling
 - Mikolov et al. 2013
 - Hierarchical Decomposition
 - Morin and Bengio 2005. Mnih and Hinton 2008. Mikolov et al. 2013
 - Graph Processing Unit (GPU)

Word Analogy

$$v(\text{king}) - v(\text{queen}) \approx v(\text{man}) - v(\text{woman})$$

Part 2.4: Recurrent and Other

Neural Networks

Language Models

- A language model computes a probability for a sequence of word: $P(w_1, \dots w_n)$ or predicts a probability for the next word: $P(w_{n+1}|w_1, \dots w_n)$
- Useful for machine translation, speech recognition, and so on
 - Word ordering
 - P(the cat is small) > P(small the is cat)
 - Word choice
 - P(there are four cats) > P(there are for cats)

Traditional Language Models

- An incorrect but necessary Markov assumption!
 - Probability is usually conditioned on window of n previous words

•
$$P(w_1, \dots w_n) = \prod_{i=1}^m P(w_i | w_1, \dots, w_{i-1}) \approx \prod_{i=1}^m P(w_i | w_{i-(n-1)}, \dots, w_{i-1})$$

How to estimate probabilities

•
$$p(w_2|w_1) = \frac{count(w_1, w_2)}{count(w_1)}$$
 $p(w_3|w_1, w_2) = \frac{count(w_1, w_2, w_3)}{count(w_1, w_2)}$

- Performance improves with keeping around higher n-grams counts and doing smoothing, such as backoff (e.g. if 4-gram not found, try 3-gram, etc)
- Disadvantages
 - There are A LOT of n-grams!
 - Cannot see too long history
 - P(坐/作了一整天的 火车/作业)

Recurrent Neural Networks (RNNs)

- Condition the neural network on all previous inputs
- RAM requirement only scales with number of inputs

Recurrent Neural Networks (RNNs)

At a single time step t

•
$$h_t = \tanh(W^1 h_{t-1} + W^2 x_t)$$

Training RNNs is hard

- Ideally inputs from many time steps ago can modify output y
- For example, with 2 time steps

BackPropagation Through Time (BPTT)

Total error is the sum of each error at time step t

•
$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W}$$

- $\frac{\partial E_t}{\partial w^3} = \frac{\partial E_t}{\partial v_t} \frac{\partial y_t}{\partial w^3}$ is easy to be calculated
- But to calculate $\frac{\partial E_t}{\partial w^1} = \frac{\partial E_t}{\partial v_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial w^1}$ is hard (also for W^2)
- Because $h_t = \tanh(W^1 h_{t-1} + W^2 x_t)$ depends on h_{t-1} , which depends on W^1 and h_{t-2} , and so on.

• So
$$\frac{\partial E_t}{\partial W^1} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W^1}$$

The vanishing gradient problem

•
$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial v_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_t} \frac{\partial h_k}{\partial W}$$
, $h_t = \tanh(W^1 h_{t-1} + W^2 x_t)$

•
$$\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}} = \prod_{j=k+1}^t W^1 \text{diag}[\tanh'(\cdots)]$$

- $\bullet \left\| \frac{\partial h_t}{\partial h_{t-1}} \right\| \le \gamma \|W^1\| \le \gamma \lambda_1$
 - where γ is bound $\|\mathrm{diag}[\tanh'(\cdots)]\|$, λ_1 is the largest singular value of W^1

•
$$\left\| \frac{\partial h_t}{\partial h_k} \right\| \le (\gamma \lambda_1)^{t-k} \to 0$$
, if $\gamma \lambda_1 < 1$

- This can become very small or very large quickly → Vanishing or exploding gradient
 - Trick for exploding gradient: clipping trick (set a threshold)

A "solution"

- Intuition
 - Ensure $\gamma \lambda_1 \geq 1 \rightarrow$ to prevent vanishing gradients
- So ...
 - Proper initialization of the W
 - To use ReLU instead of tanh or sigmoid activation functions

A better "solution"

- Recall the original transition equation
 - $h_t = \tanh(W^1 h_{t-1} + W^2 x_t)$
- We can instead update the state additively
 - $u_t = \tanh(W^1 h_{t-1} + W^2 x_t)$
 - $h_t = h_{t-1} + u_t$
 - then, $\left\|\frac{\partial h_t}{\partial h_{t-1}}\right\| = 1 + \left\|\frac{\partial u_t}{\partial h_{t-1}}\right\| \ge 1$
 - On the other hand
 - $h_t = h_{t-1} + u_t = h_{t-2} + u_{t-1} + u_t = \cdots$

A better "solution" (cont.)

- Interpolate between old state and new state ("choosing to forget")
 - $f_t = \sigma(W^f x_t + U^f h_{t-1})$
 - $h_t = f_t \odot h_{t-1} + (1 f_t) \odot u_t$
- Introduce a separate **input gate** i_t
 - $i_t = \sigma(W^i x_t + U^i h_{t-1})$
 - $h_t = f_t \odot h_{t-1} + i_t \odot u_t$
- Selectively expose memory cell c_t with an **output gate** o_t
 - $o_t = \sigma(W^o x_t + U^o h_{t-1})$
 - $c_t = f_t \odot c_{t-1} + i_t \odot u_t$
 - $h_t = o_t \odot \tanh(c_t)$

Long Short-Term Memory (LSTM)

$$u_t = \tanh(Wh_{t-1} + Vx_t)$$
 $f_t = \operatorname{sigmoid}(W_fh_{t-1} + V_fx_t)$
 $i_t = \operatorname{sigmoid}(W_ih_{t-1} + V_ix_t)$
 $o_t = \operatorname{sigmoid}(W_oh_{t-1} + V_ox_t)$
 $c_t = f_t \odot c_{t-1} + i_t \odot u_t$
 $h_t = o_t \odot \tanh(c_t)$
 $y_t = Uh_t$

Hochreiter & Schmidhuber, 1997

LSTM = additive updates + gating

Gated Recurrent Unites, GRU (Cho et al. 2014)

- Main ideas
 - Keep around memories to capture long distance dependencies
 - Allow error messages to flow at different strengths depending on the inputs
- Update gate
 - Based on current input and hidden state
 - $z_t = \sigma(W^z x_t + U^z h_{t-1})$
- Reset gate
 - Similarly but with different weights
 - $r_t = \sigma(W^r x_t + U^r h_{t-1})$

GRU

- New memory content
 - $\tilde{h}_t = \tanh(Wx_t + r_t \odot Uh_{t-1})$
 - Update gate z controls how much of past state should matter now
 - If z closed to 1, then we can copy information in that unit through many time steps → less vanishing gradient!
 - If reset gate *r* unit is close to 0, then this ignores previous memory and only stores the new input information → allows model to drop information that is irrelevant in the future
 - Units with long term dependencies have active update gates z
 - Units with short-term dependencies often have rest gates r very active
- Final memory at time step combines current and previous time steps

•
$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}$$

LSTM vs. GRU

- No clear winner!
- Tuning hyperparameters like layer size is probably more important than picking the ideal architecture
- GRUs have fewer parameters and thus may train a bit faster or need less data to generalize
- If you have enough data, the greater expressive power of LSTMs may lead to better results.

More RNNs

• Bidirectional RNN

• Stack Bidirectional RNN

Tree-LSTMs

• Traditional Sequential Composition

• Tree-Structured Composition

More Applications of RNN

- Neural Machine Translation
- Handwriting Generation
- Image Caption Generation
-

Neural Machine Translation

Attention Mechanism – Scoring

Convolution Neural Network

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved **Feature**

Pooling

and stride 2

CNN for NLP

Recursive Neural Network

Socher, R., Manning, C., & Ng, A. (2011). Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Network. NIPS.