Deep Learning and Lexical, Syntactic and Semantic Analysis

Wanxiang Che (HIT)
Yue Zhang (SUTD)

Part 5: Beam-search Decoding

- Automata
 - State
 - Start state —— an empty structure
 - End state —— the output structure
 - Intermediate states —— partially constructed structures
 - Actions
 - Change one state to another

• Automata

• Automata

• Automata

- State
 - Corresponds to partial results during decoding
 - start state, end state, S_i

- Actions
 - The operations that can be applied for state transition
 - Construct output incrementally
 - a_i

POS tagging

I like reading books → I/PRON like/VERB reading/VERB books/NOUN

Transition system

- State
 - Partially labeled word-POS pairs
 - Unprocessed words
- Actions
 - TAG(t) $w_1/t_1 \cdots w_i/t_i \rightarrow w_1/t_1 \cdots w_i/t_i w_{i+1}/t$

• Start State

I like reading books

• TAG(PRON)

I/PRON

like reading books

• TAG(VERB)

I/PRON like/VERB

reading books

• TAG(VERB)

I/PRON like/VERB reading/VERB

books

• TAG (NOUN)

I/PRON like/VERB reading/VERB books/NOUN

• End State

I/PRON like/VERB reading/VERB books/NOUN

- State
 - Partially segmented results
 - Unprocessed characters

- Two candidate actions
 - Separate ## ## → ## ## #
 - Append ## ## → ## ###

Initial State

• Separate

我

喜欢读书

Separate

我 喜

欢读书

Append

我 喜欢

读书

Separate

我 喜欢 读

书

Separate

我 喜欢 读 书

• End State

我 喜欢 读 书

- State
 - A stack to hold partial structures
 - A queue of next incoming words
- Actions
 - SHIFT, REDUCE, ARC-LEFT, ARC-RIGHT

State

- Actions
 - Shift

- Actions
 - Shift
 - > Pushes stack

- Actions
 - Reduce

- Actions
 - Reduce
 - Pops stack

- Actions
 - Arc-Left

- Actions
 - Arc-Left
 - Pops stack
 - > Adds link

- Actions
 - Arc-right

- Actions
 - Arc-right
 - > Pushes stack
 - > Adds link

- An example
 - \bullet S Shift
 - R Reduce
 - AL ArcLeft
 - AR ArcRight

_____ He does it here

- An example
 - \bullet S Shift
 - R Reduce
 - AL ArcLeft
 - AR ArcRight

- An example
 - \bullet S Shift
 - R Reduce
 - AL ArcLeft
 - AR ArcRight

- An example
 - \bullet S Shift
 - R Reduce
 - AL ArcLeft
 - AR ArcRight

- \bullet S Shift
- R Reduce
- AL ArcLeft
- AR ArcRight

- \bullet S Shift
- R Reduce
- AL ArcLeft
- AR ArcRight

- \bullet S Shift
- R Reduce
- AL ArcLeft
- AR ArcRight

- \bullet S Shift
- R Reduce
- AL ArcLeft
- AR ArcRight

Other examples

Language generation

- Translation
 - Word by word
 - Phrase by phrase
 - Syntax tree synthesis

Part 5.1: Beam-search Decoding ——learning to search (Zhang and Clark, 2011)

Search

Find the best sequence of actions

function BEAM-SEARCH(problem, agenda, candidates, B)

```
candidates \leftarrow \{STARTITEM(problem)\}
agenda \leftarrow CLEAR(agenda)
loop\ do
for\ each\ candidate\ in\ candidates
agenda \leftarrow INSERT(EXPAND(candidate,\ problem),\ agenda)
best \leftarrow TOP(agenda)
if\ GOALTEST(problem,\ best)
then\ return\ best
candidates \leftarrow TOP-B(agenda,\ B)
agenda \leftarrow CLEAR(agenda)
```

- Our parser
 - Decoding

- Our parser
 - Decoding

Our parser

Decoding

Our parser

Decoding

Our parser

Decoding

Our parser

Decoding

and Combining Graph-Based And transition-Based Dependency Parsing Using Beam-search. EMNLP.

Our parser

Decoding

Our parser

Decoding


```
Inputs: training examples (x_i, y_i = \{S_0^i S_1^i \cdots S_m^i\} is a state sequence)<sub>1</sub><sup>N</sup>
Initialization: set \overrightarrow{w} = 0
Algorithm:
for r = 1 \cdots P, i = 1 \cdots N do
   candidates \leftarrow \{S_0^i\}
   agenda \leftarrow CLEAR(agenda)
   for k = 1 \cdots m, m corresponds to a specific training example. do
      for each candidate in candidates do
         agenda \leftarrow INSERT(EXPAND(candidate), agenda)
         candidates \leftarrow TOP - B(agenda, B)
         best \leftarrow TOP(agenda)
         if S_k^i is not in candidates or (best \neq S_m^i) and k equals m) then
            \overrightarrow{w} = \overrightarrow{w} + \Phi(S_h^i) - \Phi(best)
         end if
      end for
   end for
end for
Output: \overrightarrow{w}
```

The main strengths

- Fast
- Arbitrary nonlocal features
- Learning fixes search

State-of-the-art results

- Chinese
 - Word segmentation
 - •Yue Zhang and Stephen Clark. Chinese Segmentation Using a Word-Based Perceptron Algorithm. In proceedings of ACL 2007. Prague, Czech Republic. June.

State-of-the-art results

- Chinese
 - Joint segmentation and POS-tagging
 - •Yue Zhang and Stephen Clark. Joint Word Segmentation and POS Tagging Using a Single Perceptron. In proceedings of ACL 2008. Ohio, USA. June.
 - •Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

State-of-the-art results

- Chinese
 - Joint segmentation, POS-tagging and chunking
 - •Chen Lyu, Yue Zhang and Donghong Ji. Joint Word Segmentation, POS-Tagging and Syntactic Chunking. In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February

- Chinese
 - Joint segmentation, POS-tagging and dependency parsing
 - •Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Character-Level Chinese Dependency Parsing. In Proceedings of ACL 2014. Baltimore, USA, June.

- Chinese
 - Joint segmentation, POS-tagging and constituent parsing
 - •Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- Chinese
 - Joint segmentation, POS-tagging and normalization
 - •Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POS-tagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- All Languages
 - Constituent parsing
 - •Yue Zhang and Stephen Clark. Transition-Based Parsing of the Chinese Treebank Using a Global Discriminative Model. In proceedings of IWPT 2009. Paris, France. October.
 - •Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang and Jingbo Zhu. Fast and Accurate Shift-Reduce Constituent Parsing. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- All Languages
 - Dependency parsing
 - •Yue Zhang and Stephen Clark. Joint Word Segmentation and POS Tagging Using a Single Perceptron. In proceedings of ACL 2008. Ohio, USA. June.
 - •Yue Zhang and Joakim Nivre. Transition-Based Dependency Parsing with Rich Non-Local Features. In proceedings of ACL 2011, short papers. Portland, USA. June.
 - •Yue Zhang and Joakim Nivre. Analyzing the Effect of Global Learning and Beam-Search for Transition-Based Dependency Parsing. In proceedings of COLING 2012, posters. Mumbai, India. December.
 - •Ji Ma, Yue Zhang and Jingbo Zhu. Punctuation Processing for Projective Dependency Parsing. In Proceedings of ACL 2014. Baltimore, USA, June.

- All Languages
 - CCG parsing
 - •Yue Zhang and Stephen Clark. Shift-Reduce CCG Parsing. In proceedings of ACL 2011. Portland, USA. June.
 - •Wenduan Xu, Stephen Clark and Yue Zhang. Shift-Reduce CCG Parsing with a Dependency Model. In Proceedings of ACL 2014. Baltimore, USA, June.

- All Languages
 - Natural language synthesis
 - •Yijia Liu, Yue Zhang, Wanxiang Che and Bing Qin. Transition-Based Syntactic Linearization. In Proceedings of NAACL 2015, Denver, Colorado, USA, May.
 - •Jiangming Liu and Yue Zhang. An Empirical Comparison Between N-gram and Syntactic Language Models for Word Ordering. In proceedings of EMNLP 2015, Lisboa, Portugal, September.
 - •Ratish Puduppully, Yue Zhang and Manish Shrivastava. Transition-Based Syntactic Linearization with Lookahead Features. In Proceedings of the NAACL 2016, San Diego, USA, June.

- All Languages
 - Joint morphological generation and text linearization
 - Linfeng Song, Yue Zhang, Kai Song and Qun Liu. Joint Morphological Generation and Syntactic Linearization. In Proceedings of AAAI 2014. Quebec City, Canada, July.

- All Languages
 - Joint entity and relation extraction
 - •Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. Joint Models for Extracting Adverse Drug Events from Biomedical Text. In Proceedings of IJCAI 2016. New York City, USA, July.

Part 5.2: A Neural Network Version

Neural Network Model

- Use NN to substitute perceptron
- •Why?

- Better non-linear power
- Unsupervised word embeddings
- > Automatic feature combination
- Shown useful in greedy models

step	action	$buffer(\cdots w_{-1}w_0)$	queue $(c_0c_1\cdots)$
0	-	ϕ	中国…
1	SEP	中	国 外
2	APP	中国	外 企 …
3	SEP	中国 外	企 业 …
4	APP	中国 外企	业 务 …
5	SEP	中国 外企 业	务 发
6	APP	中国 外企 业务	发展…
7	SEP	… 业务 发	展 迅 速
8	APP	… 业务 发展	迅 速
9	SEP	… 发展 迅	速
10	APP	发展 迅速	ϕ

Feature templates	Action
$c_{-1}c_{0}$	APP, SEP
$w_{-1}, w_{-1}w_{-2}, w_{-1}c_0, w_{-2}len(w_{-1})$	
$start(w_{-1})c_0, end(w_{-1})c_0$	
$start(w_{-1})end(w_{-1}), end(w_{-2})end(w_{-1})$	SEP
$w_{-2}len(w_{-1}), len(w_{-2})w_{-1}$	
w_{-1} , where $len(w_{-1}) = 1$	

Models	P	R	F
word-based models			
discrete	95.29	95.26	95.28
neural	95.34	94.69	95.01
combined	96.11	95.79	95.95
character-based models			
discrete	95.38	95.12	95.25
neural	94.59	94.92	94.76
combined	95.63	95.60	95.61
other models			
Zhang et al. (2014)	N/A	N/A	95.71
Wang et al. (2011)	95.83	95.75	95.79
Zhang and Clark (2011)	95.46	94.78	95.13

Main results on CTB60 test dataset

Models	PKU	MSR
our word-based models		
discrete	95.1	97.3
neural	95.1	97.0
combined	95.7	97.7
character-based models		
discrete	94.9	96.8
neural	94.4	97.2
combined	95.4	97.2
other models		
Cai and Zhao (2016)	95.5	96.5
Ma and Hinrichs (2015)	95.1	96.6
Pei et al. (2014)	95.2	97.2
Zhang et al. (2013a)	96.1	97.5
Sun et al. (2012)	95.4	97.4
Zhang and Clark (2011)	95.1	97.1
Sun (2010)	95.2	96.9
Sun et al. (2009)	95.2	97.3

Main results on PKU and MSR test dataset

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Cai and Zhao (2016) presents a similar idea

•Zhang & Nivre (2011)

$$y = \underset{y' \in GEN(x)}{\operatorname{arg max}} score(y')$$

$$score(y) = \sum_{a \in y} \theta \cdot \Phi(a)$$

Chen and Manning (2014)

$$h = (W_1x + b_1)^3$$
$$p = softmax(o)$$
$$o = W_2h$$

What does not work

$$s(y) = \sum_{a \in y} \log p_a$$

$$L(\theta) = max(0, \delta - s(y_g) + s(y_p)) + \frac{\lambda}{2} \parallel \theta \parallel^2$$

Sentence-level log likelihood

$$p(y_i \mid x, \theta) = \frac{e^{f(x, \theta)_i}}{\sum_{y_j \in \text{GEN}(x)} e^{f(x, \theta)_j}}$$

$$f(x, \theta)_i = \sum_{a_i \in u_i} o(x, y_i, k, a_k)$$

Contrastive Estimation

$$L(\theta) = -\sum_{(x_i, y_i) \in (X, Y)} \log p(y_i \mid x_i, \theta)$$

$$= -\sum_{(x_i, y_i) \in (X, Y)} \log \frac{e^{f(x_i, \theta)_i}}{Z(x_i, \theta)}$$

$$= \sum_{(x_i, y_i) \in (X, Y)} \log Z(x_i, \theta) - f(x_i, \theta)_i$$

$$Z(x, \theta) = \sum_{y_i \in \text{GEN}(x)} e^{f(x, \theta)_j}$$

Contrastive Estimation

$$L'(\theta) = -\sum_{(x_i, y_i) \in (X, Y)} \log p'(y_i \mid x_i, \theta)$$

$$= -\sum_{(x_i, y_i) \in (X, Y)} \log \frac{e^{f(x_i, \theta)_i}}{Z'(x_i, \theta)}$$

$$= \sum_{(x_i, y_i) \in (X, Y)} \log Z'(x_i, \theta) - f(x_i, \theta)_i$$

$$Z'(x, \theta) = \sum_{y_i \in \text{BEAM}(x)} e^{f(x, \theta)_j}$$

Results

Description	UAS					
Baseline	91.6	3				
	structured	greedy				
beam = 1	74.90	91.63				
beam = 4	84.64	91.92				
beam = 16	91.53	91.90				
beam = 64	93.12	91.84				
beam = 100	93.23	91.81				

Results

Description	UAS
greedy neural parser	91.47
ranking model	89.08
beam contrastive learning	93.28

Results

System		UAS	LAS	Speed
baseline gr	eedy parser	91.47	90.43	0.001
Huang and	Sagae (2010)	92.10		0.04
Zhang and	Nivre (2011)	92.90	91.80	0.03
Choi and M	IcCallum (2013)	92.96	91.93	0.009
Ma et al. (2	2014)	93.06		
Bohnet and	Nivre (2012)†‡	93.67	92.68	0.4
Suzuki et a	1. (2009)†	93.79		
Koo et al. (2008)†	93.16		
Chen et al.	(2014)†	93.77		
be	am size			
training	decoding			
100	100	93.28	92.35	0.07
100	64	93.20	92.27	0.04
100	16	92.40	91.95	0.01

- Andor et al. follows this method
 - Offers theorem
 - Tries more tasks
 - Get better results

Dependency parsing

	WSJ	Unio	n-News	Union-Web		Union	-QTB
Method	UAS L	AS UAS	LAS	UAS	LAS	UAS	LAS
Martins et al. (2013)*	92.89 90	.55 93.10	91.13	88.23	85.04	94.21	91.54
Zhang and McDonald (2014)*	93.22 91	.02 93.32	91.48	88.65	85.59	93.37	90.69
Weiss et al. (2015)	93.99 92	.05 93.91	92.25	89.29	86.44	94.17	92.06
Alberti et al. (2015)	94.23 92	.36 94.10	92.55	89.55	86.85	94.74	93.04
Our Local (B=1)	92.95 91	.02 93.11	91.46	88.42	85.58	92.49	90.38
Our Local (B=32)	93.59 91	.70 93.65	92.03	88.96	86.17	93.22	91.17
Our Global (B=32)	94.61 92	.79 94.44	92.93	90.17	87.54	95.40	93.64
Parsey McParseface (B=8)	-	- 94.15	92.51	89.08	86.29	94.77	93.17

Dependency parsing

	Catalan	Chinese	Czech	English	German	Japanese	Spanish
Method	UAS LAS	UAS LAS					
Best Shared Task Result	- 87.86	- 79.17	- 80.38	- 89.88	- 87.48	- 92.57	- 87.64
Ballesteros et al. (2015)	90.22 86.42	80.64 76.52	79.87 73.62	90.56 88.01	88.83 86.10	93.47 92.55	90.38 86.59
Zhang and McDonald (2014)	91.41 87.91	82.87 78.57	86.62 80.59	92.69 90.01	89.88 87.38	92.82 91.87	90.82 87.34
Lei et al. (2014)	91.33 87.22	81.67 76.71	88.76 81.77	92.75 90.00	90.81 87.81	94.04 91.84	91.16 87.38
Bohnet and Nivre (2012)	92.44 89.60	82.52 78.51	88.82 83.73	92.87 90.60	91.37 89.38	93.67 92.63	92.24 89.60
Alberti et al. (2015)	92.31 89.17	83.57 79.90	88.45 83.57	92.70 90.56	90.58 88.20	93.99 93.10	92.26 89.33
Our Local (B=1)	91.24 88.21	81.29 77.29	85.78 80.63	91.44 89.29	89.12 86.95	93.71 92.85	91.01 88.14
Our Local (B=16)	91.91 88.93	82.22 78.26	86.25 81.28	92.16 90.05	89.53 87.4	93.61 92.74	91.64 88.88
Our Global (B=16)	92.67 89.83	84.72 80.85	88.94 84.56	93.22 91.23	90.91 89.15	93.65 92.84	92.62 89.95

POS-tagging

	En	I	En-Unio	n				С	oNLL '	09			Avg
Method	WSJ	News	Web	QTB		Ca	Ch	Cz	En	Ge	Ja	Sp	-
Linear CRF Ling et al. (2015)	97.17 97.78	97.60 97.44	94.58 94.03	96.04 96.18		98.81 98.77	94.45 94.38	98.90 99.00	97.50 97.60	97.14 97.84	97.90 97.06	98.79 98.71	97.17 97.16
Our Local (B=1) Our Local (B=8) Our Global (B=8)	97.44 97.45 97.44	97.66 97.69 97.77	94.46 94.46 94.80	96.59 96.64 96.86		98.91 98.88 99.03	94.56 94.56 94.72	98.96	97.36 97.40 97.65	97.35	98.02 98.02 98.37	98.88 98.89 98.97	97.29 97.30 97.47
Parsey McParseface	-	97.52	94.24	96.45	-	-	-	-	-	-	-	-	_

Compression

Method	Generated corpu		Huma	n eval
	A F1		read	info
Filippova et al. (2015) Automatic	35.36	82.83	4.66 4.31	4.03 3.77
Our Local (B=1) Our Local (B=8) Our Global (B=8)	30.51	78.72	4.58	4.03
	31.19	75.69	-	-
	35.16	81.41	4.67	4.07

Part 5.3: Similar methods by others

Other methods (I)

Constituent parsing

(a) shift-X action

Watanabe, T., & Sumita, E. (2016). Transition-based Neural Constituent Parsing. ACL.

Other methods (I)

Update at max-violation

$$j^* = \operatorname*{arg\,min}_{j} \left\{ \rho_{\boldsymbol{\theta}}(y_0^j) - \operatorname*{max}_{\boldsymbol{d} \in B_j} \rho_{\boldsymbol{\theta}}(\boldsymbol{d}) \right\}$$

Using expected loss from all violations

$$L(\boldsymbol{w}, \boldsymbol{y}; \boldsymbol{B}, \boldsymbol{\theta}) = \max \left\{ 0, 1 - \rho_{\boldsymbol{\theta}}(y_0^{j^*}) + \mathbb{E}_{\tilde{B}_{j^*}}[\rho_{\boldsymbol{\theta}}] \right\}$$

$$\tilde{B}_{j^*} = \left\{ \boldsymbol{d} \in B_{j^*} \middle| \rho_{\boldsymbol{\theta}}(\boldsymbol{d}) > \rho_{\boldsymbol{\theta}}(y_0^{j^*}) \right\}$$

$$p_{\boldsymbol{\theta}}(\boldsymbol{d}) = \frac{\exp(\rho_{\boldsymbol{\theta}}(\boldsymbol{d}))}{\sum_{\boldsymbol{d}' \in \tilde{B}_{j^*}} \exp(\rho_{\boldsymbol{\theta}}(\boldsymbol{d}'))}$$

$$\mathbb{E}_{\tilde{B}_{j^*}}[\rho_{\boldsymbol{\theta}}] = \sum_{\boldsymbol{d} \in \tilde{B}_{i^*}} p_{\boldsymbol{\theta}}(\boldsymbol{d}) \rho_{\boldsymbol{\theta}}(\boldsymbol{d}).$$

Watanabe, T., & Sumita, E. (2016). Transition-based Neural Constituent Parsing. ACL.

parser	test
Collins (Collins, 1997)	87.8
Berkeley (Petrov and Klein, 2007)	90.1
SSN (Henderson, 2004)	90.1
ZPar (Zhu et al., 2013)	90.4
CVG (Socher et al., 2013)	90.4
Charniak-R (Charniak and Johnson, 2005)	91.0
This work: TNCP	90.7

parser	test
ZPar (Zhu et al., 2013)	83.2
Berkeley (Petrov and Klein, 2007)	83.3
Joint (Wang and Xue, 2014)	84.9
This work: TNCP	84.3

- CCG Parsing
- expected F1 training

$$J(\theta) = -xF1(\theta)$$

$$= -\sum_{y_i \in \Lambda(x_n)} p(y_i|\theta)F1(\Delta_{y_i}, \Delta_{x_n}^G)$$

$$p(y_i|\theta) = \frac{\exp\{\rho(y_i)\}}{\sum_{y \in \Lambda(x_n)} \exp\{\rho(y)\}}$$

Xu, W., Auli, M., & Clark, S. (2016). Expected F-Measure Training for Shift-Reduce Parsing with Recurrent Neural Networks. NAACL.

$$\frac{\partial J(\theta)}{\partial \theta} = -\sum_{y_i \in \Lambda(x_n)} \sum_{y_{ij} \in y_i} \frac{\partial J(\theta)}{\partial s_{\theta}(y_{ij})} \frac{\partial s_{\theta}(y_{ij})}{\partial \theta}$$
$$= -\sum_{y_i \in \Lambda(x_n)} \sum_{y_{ij} \in y_i} \delta_{y_{ij}} \frac{\partial s_{\theta}(y_{ij})}{\partial \theta},$$

$$\begin{split} \delta_{y_{ij}} &= -\frac{\partial \mathbf{x} \mathbf{F} \mathbf{1}(\theta)}{\partial s_{\theta}(y_{ij})} \\ &= -\frac{\partial (G(\theta)/Z(\theta))}{\partial s_{\theta}(y_{ij})} \\ &= \frac{G(\theta)Z'(\theta) - G'(\theta)Z(\theta)}{Z^{2}(\theta)} \\ &= \frac{\exp\{\rho(y_{i})\}}{Z(\theta)} (\mathbf{x} \mathbf{F} \mathbf{1}(\theta) - \mathbf{F} \mathbf{1}(\Delta_{y_{i}}, \Delta_{x_{n}}^{G})) \frac{1}{s_{\theta}(y_{ij})} \\ &= p(y_{i}|\theta)(\mathbf{x} \mathbf{F} \mathbf{1}(\theta) - \mathbf{F} \mathbf{1}(\Delta_{y_{i}}, \Delta_{x_{n}}^{G})) \frac{1}{s_{\theta}(y_{ij})}, \end{split}$$

Xu, W., Auli, M., & Clark, S. (2016). Expected F-Measure Training for Shift-Reduce Parsing with Recurrent Neural Networks. NAACL.

	Section 00		Section 23						
Model	LP	LR	LF	CAT	LP	LR	LF	CAT	Speed
C&C (normal)	85.18	82.53	83.83	92.39	85.45	83.97	84.70	92.83	97.90
C&C (hybrid)	86.07	82.77	84.39	92.57	86.24	84.17	85.19	93.00	95.25
Zhang and Clark (2011) $(b = 16)$	87.15	82.95	85.00	92.77	87.43	83.61	85.48	93.12	-
Zhang and Clark (2011)* $(b = 16)$	86.76	83.15	84.92	92.64	87.04	84.14	85.56	92.95	49.54
Xu et al. (2014) $(b = 128)$	86.29	84.09	85.18	92.75	87.03	85.08	86.04	93.10	12.85
RNN-greedy $(b=1)$	88.12	81.38	84.61	93.42	88.53	81.65	84.95	93.57	337.45
RNN-greedy $(b=6)$	87.96	82.27	85.02	93.47	88.54	82.77	85.56	93.68	96.04
RNN-xF1 $(b=8)$	88.20	83.40	85.73	93.56	88.74	84.22	86.42	93.87	67.65

Xu, W., Auli, M., & Clark, S. (2016). Expected F-Measure Training for Shift-Reduce Parsing with Recurrent Neural Networks. NAACL.

Dependency parsing

Weiss, D., Alberti, C., Collins, M., & Petrov, S. (2015). Structured Training for Neural Network Transition-Based Parsing. ACL.

- Using Chen and Manning features for perceptron training
- Back-propagation pre-training

$$L(\Theta) = -\sum_{i} \log P(y_j \mid c_j, \Theta) + \lambda \sum_{i} ||\mathbf{W}_i||_2^2$$

Structured perceptron training

$$(h_1, h_2, P(y))$$

Method	UAS	LAS	Beam
Graph-based			
Bohnet (2010)	92.88	90.71	n/a
Martins et al. (2013)	92.89	90.55	n/a
Zhang and McDonald (2014)	93.22	91.02	n/a
Transition-based			
*Zhang and Nivre (2011)	93.00	90.95	32
Bohnet and Kuhn (2012)	93.27	91.19	40
Chen and Manning (2014)	91.80	89.60	1
S-LSTM (Dyer et al., 2015)	93.20	90.90	1
Our Greedy	93.19	91.18	1
Our Perceptron	93.99	92.05	8
Tri-training			
*Zhang and Nivre (2011)	92.92	90.88	32
Our Greedy	93.46	91.49	1
Our Perceptron	94.26	92.41	8

Weiss, D., Alberti, C., Collins, M., & Petrov, S. (2015). Structured Training for Neural Network Transition-Based Parsing. ACL.

Dependency parsing

System	wsj23-S	wsj23-YM
ErrSt-25-rand	92.17	92.16
ErrSt-25-pre*	93.61	93.21
Chen & Manning*	91.8	_
Huang & Sagae	_	92.1
Zhang & Nivre	93.5	92.9
Weiss et al.*	93.99	_
Zhang & McDonald	93.71	93.57
Martins et al.	92.82	93.07
Koo et al. (dep2c)*	_	93.16

Part 5.4: Beam-search Decoding for Sequence to Sequence Models

Scheduled Sampling

Beam Search Inference

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled Sampling for Sequence Prediction with Recurrent Nueral Networks. NIPS.

Scheduled Sampling

Approach	F1
Baseline LSTM	86.54
Baseline LSTM with Dropout	87.0
Always Sampling	-
Scheduled Sampling	88.08
Scheduled Sampling with Dropout	88.68

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled Sampling for Sequence Prediction with Recurrent Nueral Networks. NIPS.

Sequence-level training

Ranzato, M., Chopra, S., Auli, M., & Zaremba, W. (2016). Sequence Level Training with Recurrent Neural Networks. ICLR.

Sequence-level training

Sequence-level training

Reinforce

$$L_{\theta} = -\sum_{w_1^g, \dots, w_T^g} p_{\theta}(w_1^g, \dots, w_T^g) r(w_1^g, \dots, w_T^g) = -\mathbb{E}_{[w_1^g, \dots, w_T^g] \sim p_{\theta}} r(w_1^g, \dots, w_T^g)$$

Mixer


```
 \begin{array}{l} \textbf{Data} \text{: a set of sequences with their corresponding context.} \\ \textbf{Result} \text{: RNN optimized for generation.} \\ \textbf{Initialize RNN at random and set } N^{XENT}, N^{XE+R} \text{ and } \Delta; \\ \textbf{for } s = T, 1, -\Delta \text{ do} \\ & | \text{ if } s == T \text{ then} \\ & | \text{ train RNN for } N^{XENT} \text{ epochs using XENT only;} \\ \textbf{else} \\ & | \text{ train RNN for } N^{XE+R} \text{ epochs. Use XENT loss in the first } s \text{ steps, and REINFORCE (sampling from the model) in the remaining } T - s \text{ steps;} \\ & | \text{ end} \\ \end{pmatrix}
```

TASK	XENT	DAD	E2E	MIXER
summarization	13.01	12.18	12.78	16.22
translation	17.74	20.12	17.77	20.73
image captioning	27.8	28.16	26.42	29.16

Learning for Search

Wiseman, S., & Rush, A. (2016). Sequence-to-Sequence Learning as Beam-Search Optimization. arxiv.

$$\mathcal{L}(f) = \sum_{t=1}^{T} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - f(y_t, \boldsymbol{h}_{t-1}) + f(\hat{y}_t^{(K)}, \hat{\boldsymbol{h}}_{t-1}^{(K)}) \right]$$

Need greedy pre-training

Curriculum beam increase

	Word Ordering (BLEU)			
	$K_{te} = 1$	$K_{te} = 5$	$K_{te} = 10$	
seq2seq	25.2	29.8	31.0	
BSO	28.0	33.2	34.3	
ConBSO	28.6	34.3	34.5	
LSTM-LM	15.4	-	26.8	

Dependency Parsing (UAS/LAS)					
	$K_{te} = 1$	$K_{te} = 5$	$K_{te} = 10$		
seq2seq	87.33/82.26	88.53/84.16	88.66/84.33		
BSO	86.91/82.11	91.00/ 87.18	91.17/ 87.41		
ConBSO	85.11/79.32	91.25 /86.92	91.57 /87.26		
Andor	93.17/91.18	-	-		

	Machine Translation (BLEU)			
	$K_{te} = 1$	$K_{te} = 5$	$K_{te} = 10$	
seq2seq	22.53	24.03	23.87	
BSO, SB- Δ	23.83	26.36	25.48	
XENT	17.74	≤ 20.5	≤ 20.5	
DAD	20.12	≤ 22.5	≤ 23.0	
MIXER	20.73	-	≤ 22.0	