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Figure 1: Example of NER labels between two word-aligned bilingual parallel sentences.

unannotated bi-text, and use the resulting annotated data as
additional training data to train a new monolingual model
with better coverage.1

Burkett et al. (2010) proposed a similar framework with
a “multi-view” learning scheme where k-best outputs of
two monolingual taggers are reranked using a complex self-
trained reranking model. In our work, we propose a sim-
ple decoding method based on Gibbs sampling that elimi-
nates the need for training complex reranking models. In
particular, we construct a new factored probabilistic model
by chaining together two Conditional Random Field mono-
lingual models with a bilingual constraint model, which en-
courages soft label agreements. We then apply Gibbs sam-
pling to find the best labels under the new factored model.
We can further improve the quality of bilingual prediction by
incorporating an additional model, expanding upon Finkel,
Grenager, and Manning (2005), that enforces global label
consistency for each language.

Experiments on Named Entity Recognition (NER) show
that our bilingual method yields significant improvements
over the state-of-the-art Stanford NER system. When evalu-
ated over the standard OntoNotes English-Chinese dataset
in a bilingual setting, our models achieve a F1 error re-
duction of 18.6% in Chinese and 9.9% in English. Our
method also improves over Burkett et al. (2010) with a rela-
tive error reduction of 10.8% and 4.5% in Chinese and En-
glish, respectively. Furthermore, we automatically label a
moderate-sized set of 80k sentence pairs using our bilingual
model, and train new monolingual models using an uptrain-
ing scheme. The resulting monolingual models demonstrate
an error reduction of 9.2% over the Stanford NER systems
for Chinese.2

Monolingual NER with CRF
Named Entity Recognition is an important task in NLP. It
serves as a first step in turning unstructured text into struc-
tured data, and has broad applications in news aggregation,
question answering, and bioNLP. Given an input sentence,
an NER tagger identifies words that are part of a named en-
tity, and assigns the entity type and relative position infor-
mation. For example, in the commonly used BIO tagging
scheme, a tag such as B-PERSON indicates the word is the
beginning of a person name entity; and a I-LOCATION tag

1This training regimen is also referred to as “uptraining”
(Petrov et al. 2010).

2All of our code is made available at nlp.stanford.edu/

software/CRF-NER.shtml.

marks the word to be inside a location entity. All words
marked with tag O are not part of any entity. Figure 1 illus-
trates a tagged sentence pair in English and Chinese.

Current state-of-the-art supervised NER systems employ
an undirected graphical model called Conditional Random
Field (CRF) (Lafferty, McCallum, and Pereira 2001). Given
an input sentence x, a linear-chain structured CRF defines
the following conditional probability for tag sequence y:
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Bilingual NER Constraints
A pair of aligned sentences in two languages contain com-
plementary cues to aid the analysis of each other. For exam-
ple, in Figure 1, it is not immediately obvious whether the
phrase “Foreign Affairs” on the English side refers to an or-
ganization (Ministry of Foreign Affairs), or general foreign
affairs. But the aligned word on the Chinese side is a lot less
ambiguous, and can be easily identified as an organization
entity.

Another example is that in the Chinese training data we
have never seen the translation of the name “Kamyao”. As a
result, the tagger cannot make use of lexical features, and so
has to rely on less informative contextual features to predict
if it is a geo-political entity (GPE) or a person. But we have
seen the aligned word on the English side being tagged as
person, and thus can infer that the Chinese aligned entity
should also be a person.

It is straight-forward to see that accurate word alignment
is essential in such an analysis. Fortunately, there are auto-
matic word alignment systems used in MT research that pro-
duce robust and accurate alignment results, and our method
will use the output of one (Liang, Taskar, and Klein 2006).

Hard Agreement Constraints
Drawing on the above observations, we first propose a sim-
ple bilingual constraint model that enforces hard agree-
ments.
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person, and thus can infer that the Chinese aligned entity
should also be a person.

It is straight-forward to see that accurate word alignment
is essential in such an analysis. Fortunately, there are auto-
matic word alignment systems used in MT research that pro-
duce robust and accurate alignment results, and our method
will use the output of one (Liang, Taskar, and Klein 2006).

Hard Agreement Constraints
Drawing on the above observations, we first propose a sim-
ple bilingual constraint model that enforces hard agree-
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Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y

a

c , y
a

e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y

a

c , y
a

e) is chosen to
be the pairwise mutual information score of the entity pair
(y

a

c , y
a

e). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y

a

c , y
a

e) by exponentiating its value to the
power of the alignment probability to give a new function:
(y

a

c , y
a

e) = (y
a

c , y
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e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.

. . . theO earliestO establishedO bondedO areaO

. . . �ÈO �ûO ÑO ›�:B-LOC

Figure 2: Example of annotation standard inconsistency

Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:
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To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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Obtaining the state transition model P (yt
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,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label y
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in the bilingual con-
straint model is defined as
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At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for y

i

at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.



Bilingual � Factored � Model � 

We define the following probability for an output se-
quence pair y

c

and y

e

for Chinese and English input sen-
tences x

c

and x

e

, respectively:

P
bi

(y
c

,y
e

) =
Y

A={ac
,a

e}

(y
a

c , y
a

e) (4)

where A is the set of all aligned word pairs, and (y
a

c , y
a

e)
is an indicator function that equals 1 if y

a

c = y
a

e , and 0
otherwise.

Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y

a

c , y
a

e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y

a

c , y
a

e) is chosen to
be the pairwise mutual information score of the entity pair
(y

a

c , y
a

e). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y

a

c , y
a

e) by exponentiating its value to the
power of the alignment probability to give a new function:
(y

a

c , y
a

e) = (y
a

c , y
a

e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.
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Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:

P (yt|yt�1) = P (yt
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|yt�1
�i

,x) (5)

where y
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is the set of all labels except y
i

at time t� 1.
To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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Obtaining the state transition model P (yt
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,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label y
c

i

in the bilingual con-
straint model is defined as
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is a word aligned to y
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.
At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for y

i

at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.
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Figure 1: Example of NER labels between two word-aligned bilingual parallel sentences.

unannotated bi-text, and use the resulting annotated data as
additional training data to train a new monolingual model
with better coverage.1

Burkett et al. (2010) proposed a similar framework with
a “multi-view” learning scheme where k-best outputs of
two monolingual taggers are reranked using a complex self-
trained reranking model. In our work, we propose a sim-
ple decoding method based on Gibbs sampling that elimi-
nates the need for training complex reranking models. In
particular, we construct a new factored probabilistic model
by chaining together two Conditional Random Field mono-
lingual models with a bilingual constraint model, which en-
courages soft label agreements. We then apply Gibbs sam-
pling to find the best labels under the new factored model.
We can further improve the quality of bilingual prediction by
incorporating an additional model, expanding upon Finkel,
Grenager, and Manning (2005), that enforces global label
consistency for each language.

Experiments on Named Entity Recognition (NER) show
that our bilingual method yields significant improvements
over the state-of-the-art Stanford NER system. When evalu-
ated over the standard OntoNotes English-Chinese dataset
in a bilingual setting, our models achieve a F1 error re-
duction of 18.6% in Chinese and 9.9% in English. Our
method also improves over Burkett et al. (2010) with a rela-
tive error reduction of 10.8% and 4.5% in Chinese and En-
glish, respectively. Furthermore, we automatically label a
moderate-sized set of 80k sentence pairs using our bilingual
model, and train new monolingual models using an uptrain-
ing scheme. The resulting monolingual models demonstrate
an error reduction of 9.2% over the Stanford NER systems
for Chinese.2

Monolingual NER with CRF
Named Entity Recognition is an important task in NLP. It
serves as a first step in turning unstructured text into struc-
tured data, and has broad applications in news aggregation,
question answering, and bioNLP. Given an input sentence,
an NER tagger identifies words that are part of a named en-
tity, and assigns the entity type and relative position infor-
mation. For example, in the commonly used BIO tagging
scheme, a tag such as B-PERSON indicates the word is the
beginning of a person name entity; and a I-LOCATION tag

1This training regimen is also referred to as “uptraining”
(Petrov et al. 2010).

2All of our code is made available at nlp.stanford.edu/

software/CRF-NER.shtml.

marks the word to be inside a location entity. All words
marked with tag O are not part of any entity. Figure 1 illus-
trates a tagged sentence pair in English and Chinese.

Current state-of-the-art supervised NER systems employ
an undirected graphical model called Conditional Random
Field (CRF) (Lafferty, McCallum, and Pereira 2001). Given
an input sentence x, a linear-chain structured CRF defines
the following conditional probability for tag sequence y:
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where f
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is the jth feature function, �
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is the feature weight,
and Z(x) is the partition function.

Bilingual NER Constraints
A pair of aligned sentences in two languages contain com-
plementary cues to aid the analysis of each other. For exam-
ple, in Figure 1, it is not immediately obvious whether the
phrase “Foreign Affairs” on the English side refers to an or-
ganization (Ministry of Foreign Affairs), or general foreign
affairs. But the aligned word on the Chinese side is a lot less
ambiguous, and can be easily identified as an organization
entity.

Another example is that in the Chinese training data we
have never seen the translation of the name “Kamyao”. As a
result, the tagger cannot make use of lexical features, and so
has to rely on less informative contextual features to predict
if it is a geo-political entity (GPE) or a person. But we have
seen the aligned word on the English side being tagged as
person, and thus can infer that the Chinese aligned entity
should also be a person.

It is straight-forward to see that accurate word alignment
is essential in such an analysis. Fortunately, there are auto-
matic word alignment systems used in MT research that pro-
duce robust and accurate alignment results, and our method
will use the output of one (Liang, Taskar, and Klein 2006).

Hard Agreement Constraints
Drawing on the above observations, we first propose a sim-
ple bilingual constraint model that enforces hard agree-
ments.
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unannotated bi-text, and use the resulting annotated data as
additional training data to train a new monolingual model
with better coverage.1

Burkett et al. (2010) proposed a similar framework with
a “multi-view” learning scheme where k-best outputs of
two monolingual taggers are reranked using a complex self-
trained reranking model. In our work, we propose a sim-
ple decoding method based on Gibbs sampling that elimi-
nates the need for training complex reranking models. In
particular, we construct a new factored probabilistic model
by chaining together two Conditional Random Field mono-
lingual models with a bilingual constraint model, which en-
courages soft label agreements. We then apply Gibbs sam-
pling to find the best labels under the new factored model.
We can further improve the quality of bilingual prediction by
incorporating an additional model, expanding upon Finkel,
Grenager, and Manning (2005), that enforces global label
consistency for each language.

Experiments on Named Entity Recognition (NER) show
that our bilingual method yields significant improvements
over the state-of-the-art Stanford NER system. When evalu-
ated over the standard OntoNotes English-Chinese dataset
in a bilingual setting, our models achieve a F1 error re-
duction of 18.6% in Chinese and 9.9% in English. Our
method also improves over Burkett et al. (2010) with a rela-
tive error reduction of 10.8% and 4.5% in Chinese and En-
glish, respectively. Furthermore, we automatically label a
moderate-sized set of 80k sentence pairs using our bilingual
model, and train new monolingual models using an uptrain-
ing scheme. The resulting monolingual models demonstrate
an error reduction of 9.2% over the Stanford NER systems
for Chinese.2

Monolingual NER with CRF
Named Entity Recognition is an important task in NLP. It
serves as a first step in turning unstructured text into struc-
tured data, and has broad applications in news aggregation,
question answering, and bioNLP. Given an input sentence,
an NER tagger identifies words that are part of a named en-
tity, and assigns the entity type and relative position infor-
mation. For example, in the commonly used BIO tagging
scheme, a tag such as B-PERSON indicates the word is the
beginning of a person name entity; and a I-LOCATION tag

1This training regimen is also referred to as “uptraining”
(Petrov et al. 2010).

2All of our code is made available at nlp.stanford.edu/

software/CRF-NER.shtml.

marks the word to be inside a location entity. All words
marked with tag O are not part of any entity. Figure 1 illus-
trates a tagged sentence pair in English and Chinese.

Current state-of-the-art supervised NER systems employ
an undirected graphical model called Conditional Random
Field (CRF) (Lafferty, McCallum, and Pereira 2001). Given
an input sentence x, a linear-chain structured CRF defines
the following conditional probability for tag sequence y:
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is the jth feature function, �
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is the feature weight,
and Z(x) is the partition function.

Bilingual NER Constraints
A pair of aligned sentences in two languages contain com-
plementary cues to aid the analysis of each other. For exam-
ple, in Figure 1, it is not immediately obvious whether the
phrase “Foreign Affairs” on the English side refers to an or-
ganization (Ministry of Foreign Affairs), or general foreign
affairs. But the aligned word on the Chinese side is a lot less
ambiguous, and can be easily identified as an organization
entity.

Another example is that in the Chinese training data we
have never seen the translation of the name “Kamyao”. As a
result, the tagger cannot make use of lexical features, and so
has to rely on less informative contextual features to predict
if it is a geo-political entity (GPE) or a person. But we have
seen the aligned word on the English side being tagged as
person, and thus can infer that the Chinese aligned entity
should also be a person.

It is straight-forward to see that accurate word alignment
is essential in such an analysis. Fortunately, there are auto-
matic word alignment systems used in MT research that pro-
duce robust and accurate alignment results, and our method
will use the output of one (Liang, Taskar, and Klein 2006).

Hard Agreement Constraints
Drawing on the above observations, we first propose a sim-
ple bilingual constraint model that enforces hard agree-
ments.

We define the following probability for an output se-
quence pair y
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and y

e

for Chinese and English input sen-
tences x
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and x
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, respectively:
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where A is the set of all aligned word pairs, and (y
a

c , y
a

e)
is an indicator function that equals 1 if y

a

c = y
a

e , and 0
otherwise.

Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y

a

c , y
a

e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y

a

c , y
a

e) is chosen to
be the pairwise mutual information score of the entity pair
(y

a

c , y
a

e). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y

a

c , y
a

e) by exponentiating its value to the
power of the alignment probability to give a new function:
(y

a

c , y
a

e) = (y
a

c , y
a

e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.
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Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:
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where y
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is the set of all labels except y
i

at time t� 1.
To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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Obtaining the state transition model P (yt
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,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label y
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i

in the bilingual con-
straint model is defined as
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At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for y

i

at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.
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unannotated bi-text, and use the resulting annotated data as
additional training data to train a new monolingual model
with better coverage.1

Burkett et al. (2010) proposed a similar framework with
a “multi-view” learning scheme where k-best outputs of
two monolingual taggers are reranked using a complex self-
trained reranking model. In our work, we propose a sim-
ple decoding method based on Gibbs sampling that elimi-
nates the need for training complex reranking models. In
particular, we construct a new factored probabilistic model
by chaining together two Conditional Random Field mono-
lingual models with a bilingual constraint model, which en-
courages soft label agreements. We then apply Gibbs sam-
pling to find the best labels under the new factored model.
We can further improve the quality of bilingual prediction by
incorporating an additional model, expanding upon Finkel,
Grenager, and Manning (2005), that enforces global label
consistency for each language.

Experiments on Named Entity Recognition (NER) show
that our bilingual method yields significant improvements
over the state-of-the-art Stanford NER system. When evalu-
ated over the standard OntoNotes English-Chinese dataset
in a bilingual setting, our models achieve a F1 error re-
duction of 18.6% in Chinese and 9.9% in English. Our
method also improves over Burkett et al. (2010) with a rela-
tive error reduction of 10.8% and 4.5% in Chinese and En-
glish, respectively. Furthermore, we automatically label a
moderate-sized set of 80k sentence pairs using our bilingual
model, and train new monolingual models using an uptrain-
ing scheme. The resulting monolingual models demonstrate
an error reduction of 9.2% over the Stanford NER systems
for Chinese.2

Monolingual NER with CRF
Named Entity Recognition is an important task in NLP. It
serves as a first step in turning unstructured text into struc-
tured data, and has broad applications in news aggregation,
question answering, and bioNLP. Given an input sentence,
an NER tagger identifies words that are part of a named en-
tity, and assigns the entity type and relative position infor-
mation. For example, in the commonly used BIO tagging
scheme, a tag such as B-PERSON indicates the word is the
beginning of a person name entity; and a I-LOCATION tag

1This training regimen is also referred to as “uptraining”
(Petrov et al. 2010).

2All of our code is made available at nlp.stanford.edu/

software/CRF-NER.shtml.

marks the word to be inside a location entity. All words
marked with tag O are not part of any entity. Figure 1 illus-
trates a tagged sentence pair in English and Chinese.

Current state-of-the-art supervised NER systems employ
an undirected graphical model called Conditional Random
Field (CRF) (Lafferty, McCallum, and Pereira 2001). Given
an input sentence x, a linear-chain structured CRF defines
the following conditional probability for tag sequence y:
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is the feature weight,
and Z(x) is the partition function.

Bilingual NER Constraints
A pair of aligned sentences in two languages contain com-
plementary cues to aid the analysis of each other. For exam-
ple, in Figure 1, it is not immediately obvious whether the
phrase “Foreign Affairs” on the English side refers to an or-
ganization (Ministry of Foreign Affairs), or general foreign
affairs. But the aligned word on the Chinese side is a lot less
ambiguous, and can be easily identified as an organization
entity.

Another example is that in the Chinese training data we
have never seen the translation of the name “Kamyao”. As a
result, the tagger cannot make use of lexical features, and so
has to rely on less informative contextual features to predict
if it is a geo-political entity (GPE) or a person. But we have
seen the aligned word on the English side being tagged as
person, and thus can infer that the Chinese aligned entity
should also be a person.

It is straight-forward to see that accurate word alignment
is essential in such an analysis. Fortunately, there are auto-
matic word alignment systems used in MT research that pro-
duce robust and accurate alignment results, and our method
will use the output of one (Liang, Taskar, and Klein 2006).

Hard Agreement Constraints
Drawing on the above observations, we first propose a sim-
ple bilingual constraint model that enforces hard agree-
ments.
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unannotated bi-text, and use the resulting annotated data as
additional training data to train a new monolingual model
with better coverage.1

Burkett et al. (2010) proposed a similar framework with
a “multi-view” learning scheme where k-best outputs of
two monolingual taggers are reranked using a complex self-
trained reranking model. In our work, we propose a sim-
ple decoding method based on Gibbs sampling that elimi-
nates the need for training complex reranking models. In
particular, we construct a new factored probabilistic model
by chaining together two Conditional Random Field mono-
lingual models with a bilingual constraint model, which en-
courages soft label agreements. We then apply Gibbs sam-
pling to find the best labels under the new factored model.
We can further improve the quality of bilingual prediction by
incorporating an additional model, expanding upon Finkel,
Grenager, and Manning (2005), that enforces global label
consistency for each language.

Experiments on Named Entity Recognition (NER) show
that our bilingual method yields significant improvements
over the state-of-the-art Stanford NER system. When evalu-
ated over the standard OntoNotes English-Chinese dataset
in a bilingual setting, our models achieve a F1 error re-
duction of 18.6% in Chinese and 9.9% in English. Our
method also improves over Burkett et al. (2010) with a rela-
tive error reduction of 10.8% and 4.5% in Chinese and En-
glish, respectively. Furthermore, we automatically label a
moderate-sized set of 80k sentence pairs using our bilingual
model, and train new monolingual models using an uptrain-
ing scheme. The resulting monolingual models demonstrate
an error reduction of 9.2% over the Stanford NER systems
for Chinese.2

Monolingual NER with CRF
Named Entity Recognition is an important task in NLP. It
serves as a first step in turning unstructured text into struc-
tured data, and has broad applications in news aggregation,
question answering, and bioNLP. Given an input sentence,
an NER tagger identifies words that are part of a named en-
tity, and assigns the entity type and relative position infor-
mation. For example, in the commonly used BIO tagging
scheme, a tag such as B-PERSON indicates the word is the
beginning of a person name entity; and a I-LOCATION tag

1This training regimen is also referred to as “uptraining”
(Petrov et al. 2010).

2All of our code is made available at nlp.stanford.edu/

software/CRF-NER.shtml.

marks the word to be inside a location entity. All words
marked with tag O are not part of any entity. Figure 1 illus-
trates a tagged sentence pair in English and Chinese.

Current state-of-the-art supervised NER systems employ
an undirected graphical model called Conditional Random
Field (CRF) (Lafferty, McCallum, and Pereira 2001). Given
an input sentence x, a linear-chain structured CRF defines
the following conditional probability for tag sequence y:
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Bilingual NER Constraints
A pair of aligned sentences in two languages contain com-
plementary cues to aid the analysis of each other. For exam-
ple, in Figure 1, it is not immediately obvious whether the
phrase “Foreign Affairs” on the English side refers to an or-
ganization (Ministry of Foreign Affairs), or general foreign
affairs. But the aligned word on the Chinese side is a lot less
ambiguous, and can be easily identified as an organization
entity.

Another example is that in the Chinese training data we
have never seen the translation of the name “Kamyao”. As a
result, the tagger cannot make use of lexical features, and so
has to rely on less informative contextual features to predict
if it is a geo-political entity (GPE) or a person. But we have
seen the aligned word on the English side being tagged as
person, and thus can infer that the Chinese aligned entity
should also be a person.

It is straight-forward to see that accurate word alignment
is essential in such an analysis. Fortunately, there are auto-
matic word alignment systems used in MT research that pro-
duce robust and accurate alignment results, and our method
will use the output of one (Liang, Taskar, and Klein 2006).

Hard Agreement Constraints
Drawing on the above observations, we first propose a sim-
ple bilingual constraint model that enforces hard agree-
ments.

We define the following probability for an output se-
quence pair y
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and y
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for Chinese and English input sen-
tences x
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, respectively:
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where A is the set of all aligned word pairs, and (y
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c , y
a

e)
is an indicator function that equals 1 if y

a

c = y
a

e , and 0
otherwise.

Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y

a

c , y
a

e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y

a

c , y
a

e) is chosen to
be the pairwise mutual information score of the entity pair
(y

a

c , y
a

e). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y

a

c , y
a

e) by exponentiating its value to the
power of the alignment probability to give a new function:
(y

a

c , y
a

e) = (y
a

c , y
a

e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.
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Figure 2: Example of annotation standard inconsistency

Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:

P (yt|yt�1) = P (yt
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�i

,x) (5)

where y
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is the set of all labels except y
i

at time t� 1.
To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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Obtaining the state transition model P (yt
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|yt�1
�i

,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label y
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i

in the bilingual con-
straint model is defined as
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is a word aligned to y
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.
At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for y

i

at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.



Hard � Agreement � Constraints � 

We define the following probability for an output se-
quence pair y

c

and y

e

for Chinese and English input sen-
tences x

c

and x

e

, respectively:

P
bi

(y
c

,y
e

) =
Y

A={ac
,a

e}

(y
a

c , y
a

e) (4)

where A is the set of all aligned word pairs, and (y
a

c , y
a

e)
is an indicator function that equals 1 if y

a

c = y
a

e , and 0
otherwise.

Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y
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e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y
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Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y
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e) by exponentiating its value to the
power of the alignment probability to give a new function:
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e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.
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Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:

P (yt|yt�1) = P (yt
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is the set of all labels except y
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at time t� 1.
To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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Obtaining the state transition model P (yt
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,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label y
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in the bilingual con-
straint model is defined as
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At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for y

i

at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.
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is an indicator function that equals 1 if y
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Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y

a

c , y
a

e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y
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c , y
a

e) is chosen to
be the pairwise mutual information score of the entity pair
(y
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c , y
a

e). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y
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c , y
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e) by exponentiating its value to the
power of the alignment probability to give a new function:
(y
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c , y
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e) = (y
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e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.
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Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.

Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:
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To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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Obtaining the state transition model P (yt
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,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label y
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in the bilingual con-
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3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.
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Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y
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c , y
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e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y
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e) is chosen to
be the pairwise mutual information score of the entity pair
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e). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y
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e) by exponentiating its value to the
power of the alignment probability to give a new function:
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e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.
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Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:
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at time t� 1.
To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.
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At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for y
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at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.
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Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function (y
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e) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value (y
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e) is chosen to
be the pairwise mutual information score of the entity pair
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e). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function (y
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e) by exponentiating its value to the
power of the alignment probability to give a new function:
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e)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we
consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.
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Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t� 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:
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is the set of all labels except y
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at time t� 1.
To apply the bilingual constraints during decoding, we

formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:
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Obtaining the state transition model P (yt
i

|yt�1
�i

,x) for the
monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label y
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in the bilingual con-
straint model is defined as
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.
At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for y

i

at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.
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Chinese English
Precision Recall F

1

Precision Recall F
1

Monolingual CRF 76.89 61.64 68.42 81.98 74.59 78.11
Hard 76.19 64.47 69.84 82.13 72.85 77.21
PMI 78.53 66.90 72.25 82.11 75.40 78.62
PMIalignProb 79.17 68.46 73.43 82.05 75.56 78.67
Burkett et al. 2010 77.52 65.84 71.20 82.28 76.64 79.36

Table 2: Results on bilingual parallel test set. F
1

scores that are statistically significantly better than the CRF baseline is
highlighted in bold.

Chinese English
P R F

1

P R F
1

mono 76.89 61.64 68.42 81.98 74.59 78.11
+global 77.30 58.96 66.90 83.89 74.88 79.13
+global-recall 75.23 68.12 71.50 82.31 77.63 79.90
PMIalignProb 79.17 68.46 73.43 82.05 75.56 78.67

+global 79.31 65.93 72.01 84.01 75.81 79.70
+global-recall 76.43 72.32 74.32 82.30 78.35 80.28

Table 3: Results of enforcing global consistency. global is the global consistency without “reward” parameter, and global’ is
the one with “reward” parameter. “mono” is the monolingual CRF baseline. Best number in each column is highlighted in bold.

Results on Global Consistency
Table 3 shows results on the test set after factoring in a
global consistency model. Adding global consistency to the
monolingual baseline (mono) increases performance on En-
glish (consistent with results from previous work (Finkel,
Grenager, and Manning 2005)), but hurts Chinese results,
especially in recall.

A possible explanation is that CRF models for English
are more certain about which words are entities (by having
strong indicative features such as word capitalization), and
thus a penalty does not persuade the model to label a word as
a non-entity. However, in the Chinese case, the CRF model
is weaker, and thus less certain about words being an en-
tity or not. It is also much more likely that the same word
(string) will be both an entity and a common word in Chi-
nese than English. In some cases, the model will be better
off marking a word as a non-entity, than risking taking a
penalty for labeling it inconsistently. By applying the “re-
ward” function, we see a drastic increase in recall on both
Chinese and English, with a relatively small sacrifice in pre-
cision on Chinese. The overall F

1

score increases by about
3.1% and 0.8% in Chinese and English, respectively.

Similar results can be found when we apply global con-
sistency to the bilingual model (auto). Again we see a
recall-precision tradeoff between models with or without a
“reward” function. But overall, we observe a significant in-
crease in performance when global consistency with a re-
ward function is factored in.

Modeling alignment uncertainty continues to improve the
Chinese results when the global consistency model is added,
but shows a small performance decrease on the English side.
But the gain on the Chinese side is more significant than the
loss on English side.

The best overall F
1

scores are achieved when bilingual
constraints, global consistency with reward, and alignment
uncertainty are conjoined. The combined model outper-
forms the CRF monolingual baseline, with an error reduc-
tion of 18.6% for Chinese and 9.9% for English. This model
also significantly improves over the method of Burkett et
al. (2010) with an error reduction of 10.8% for Chinese and
4.5% for English.

Beyond the difference in model performance, our method
is much easier to understand and implement than Burkett et
al. (2010). Their method involves simulating a multi-view
learning environment using “weakened” monolingual mod-
els to train a reranking model, and transplanting the param-
eters of the “weakened” models to “strong” models at test
time in a practical but ad-hoc manner.

Semi-supervised NER Results
In the previous section we demonstrated the utility of our
proposed method in a bilingual setting, where parallel sen-
tence pairs are tagged together and directly evaluated. In re-
ality, this is not the common use case. Most down-stream
NLP applications operate in a monolingual environment.
Therefore, in order to benefit general monolingual NLP sys-
tems, we propose a semi-supervised learning setting where
we use the bilingual tagger to annotate a large amount of
unannotated bilingual text, then we take the tagged sen-
tences on the Chinese side to retrain a monolingual Chinese
tagger.

To evaluate the effectiveness of this approach, we used the
Chinese-English part of the Foreign Broadcast Information
Service corpus (FBIS, LDC2003E14), and tagged it with the
auto+aP model. Unlike the OntoNotes dataset, this corpus
does not contain document boundaries. In order to apply
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able a(i, j) for an alignment link between ei and
fj . The edge factor also predicts the entity tags for
ei and fj .

The new edge potential q is defined as:

q(i,j)
⇣
ye
i , y

f
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⌘
=
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j)

pmi(ye
i ?? yf

j) denotes that ye
i and yf

j are indepen-
dent since there is no alignment between ei and fj ,
and thus their PMI score is 0. P (a(i, j) = 1) is the
probability of an alignment assignment between ei
and fj , initialized to ˆP (ei, fj) =

1
2(Pm(ei, fj) +

Pn(ei, fj)), where Pm(ei, fj) and Pn(ei, fj) are
the posterior probabilities assigned by the HMM-
aligners.

We include two dual constraints de(i, j) and
df (i, j) over alignments for every bilingual edge
factor ⇣(i, j), which are applied to the English and
Chinese sides of the alignment space, respectively.
The joint optimization problem is defined as:

max
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The DD algorithm used for this model is given
in Algorithm 3 (case 3). One special note is that
after each iteration when we consider updates to
the dual constraint for entity tags, we only check
tag agreements for cross-lingual edge factors that
have an alignment assignment value of 1. In other
words, cross-lingual edges that are not aligned do
not affect bilingual NER tagging.

Similar to �(i, j), ⇣(i, j) factors do not provide
that much additional information other than some
selectional preferences via PMI score. But the
real power of these cross-language edge cliques
is that they act as a liaison between the NER
and alignment models on each language side, and
encourage these models to indirectly agree with
each other by having them all agree with the edge
cliques.

It is also worth noting that since we decode
the alignment models with Viterbi inference, ad-
ditional constraints such as the neighborhood con-
straint proposed by DeNero and Macherey (2011)
can be easily integrated into our model. The
neighborhood constraint enforces that if fj is
aligned to ei, then fj can only be aligned to ei+1

or ei�1 (with a small penalty), but not any other
word position. We report results of adding neigh-
borhood constraints to our model in Section 6.

4 Experimental Setup

We evaluate on the large OntoNotes (v4.0) cor-
pus (Hovy et al., 2006) which contains manually
annotated NER tags for both Chinese and En-
glish. Document pairs are sentence aligned us-
ing the Champollion Tool Kit (Ma, 2006). Af-
ter discarding sentences with no aligned counter-
part, a total of 402 documents and 8,249 paral-
lel sentence pairs were used for evaluation. We
will refer to this evaluation set as full-set. We use
odd-numbered documents as the dev set and even-
numbered documents as the blind test set. We
did not perform parameter tuning on the dev set
to optimize performance, instead we fix the ini-
tial learning rate to 0.5 and maximum iterations to
1,000 in all DD experiments. We only use the dev
set for model development.

The Stanford CRF-based NER tagger was used
as the monolingual component in our models
(Finkel et al., 2005). It also serves as a state-
of-the-art monolingual baseline for both English
and Chinese. For English, we use the default tag-
ger setting from Finkel et al. (2005). For Chi-
nese, we use an improved set of features over the
default tagger, which includes distributional sim-
ilarity features trained on large amounts of non-
overlapping data. The exact features used are
omitted here for brevity, but will be released to-
gether with our code for replicating our results.

We train the two CRF models on all portions
of the OntoNotes corpus that are annotated with
named entity tags, except the parallel-aligned por-
tion which we reserve for development and test
purposes. In total, there are about 660 train-
ing documents (⇠16k sentences) for Chinese and
1,400 documents (⇠39k sentences) for English.

Out of the 18 named entity types that are an-
notated in OntoNotes, which include person, lo-
cation, date, money, and so on, we select the four
most commonly seen named entity types for evalu-
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The DD algorithm used for this model is given
in Algorithm 3 (case 3). One special note is that
after each iteration when we consider updates to
the dual constraint for entity tags, we only check
tag agreements for cross-lingual edge factors that
have an alignment assignment value of 1. In other
words, cross-lingual edges that are not aligned do
not affect bilingual NER tagging.

Similar to �(i, j), ⇣(i, j) factors do not provide
that much additional information other than some
selectional preferences via PMI score. But the
real power of these cross-language edge cliques
is that they act as a liaison between the NER
and alignment models on each language side, and
encourage these models to indirectly agree with
each other by having them all agree with the edge
cliques.

It is also worth noting that since we decode
the alignment models with Viterbi inference, ad-
ditional constraints such as the neighborhood con-
straint proposed by DeNero and Macherey (2011)
can be easily integrated into our model. The
neighborhood constraint enforces that if fj is
aligned to ei, then fj can only be aligned to ei+1

or ei�1 (with a small penalty), but not any other
word position. We report results of adding neigh-
borhood constraints to our model in Section 6.

4 Experimental Setup

We evaluate on the large OntoNotes (v4.0) cor-
pus (Hovy et al., 2006) which contains manually
annotated NER tags for both Chinese and En-
glish. Document pairs are sentence aligned us-
ing the Champollion Tool Kit (Ma, 2006). Af-
ter discarding sentences with no aligned counter-
part, a total of 402 documents and 8,249 paral-
lel sentence pairs were used for evaluation. We
will refer to this evaluation set as full-set. We use
odd-numbered documents as the dev set and even-
numbered documents as the blind test set. We
did not perform parameter tuning on the dev set
to optimize performance, instead we fix the ini-
tial learning rate to 0.5 and maximum iterations to
1,000 in all DD experiments. We only use the dev
set for model development.

The Stanford CRF-based NER tagger was used
as the monolingual component in our models
(Finkel et al., 2005). It also serves as a state-
of-the-art monolingual baseline for both English
and Chinese. For English, we use the default tag-
ger setting from Finkel et al. (2005). For Chi-
nese, we use an improved set of features over the
default tagger, which includes distributional sim-
ilarity features trained on large amounts of non-
overlapping data. The exact features used are
omitted here for brevity, but will be released to-
gether with our code for replicating our results.

We train the two CRF models on all portions
of the OntoNotes corpus that are annotated with
named entity tags, except the parallel-aligned por-
tion which we reserve for development and test
purposes. In total, there are about 660 train-
ing documents (⇠16k sentences) for Chinese and
1,400 documents (⇠39k sentences) for English.

Out of the 18 named entity types that are an-
notated in OntoNotes, which include person, lo-
cation, date, money, and so on, we select the four
most commonly seen named entity types for evalu-
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The DD algorithm used for this model is given
in Algorithm 3 (case 3). One special note is that
after each iteration when we consider updates to
the dual constraint for entity tags, we only check
tag agreements for cross-lingual edge factors that
have an alignment assignment value of 1. In other
words, cross-lingual edges that are not aligned do
not affect bilingual NER tagging.

Similar to �(i, j), ⇣(i, j) factors do not provide
that much additional information other than some
selectional preferences via PMI score. But the
real power of these cross-language edge cliques
is that they act as a liaison between the NER
and alignment models on each language side, and
encourage these models to indirectly agree with
each other by having them all agree with the edge
cliques.

It is also worth noting that since we decode
the alignment models with Viterbi inference, ad-
ditional constraints such as the neighborhood con-
straint proposed by DeNero and Macherey (2011)
can be easily integrated into our model. The
neighborhood constraint enforces that if fj is
aligned to ei, then fj can only be aligned to ei+1

or ei�1 (with a small penalty), but not any other
word position. We report results of adding neigh-
borhood constraints to our model in Section 6.

4 Experimental Setup

We evaluate on the large OntoNotes (v4.0) cor-
pus (Hovy et al., 2006) which contains manually
annotated NER tags for both Chinese and En-
glish. Document pairs are sentence aligned us-
ing the Champollion Tool Kit (Ma, 2006). Af-
ter discarding sentences with no aligned counter-
part, a total of 402 documents and 8,249 paral-
lel sentence pairs were used for evaluation. We
will refer to this evaluation set as full-set. We use
odd-numbered documents as the dev set and even-
numbered documents as the blind test set. We
did not perform parameter tuning on the dev set
to optimize performance, instead we fix the ini-
tial learning rate to 0.5 and maximum iterations to
1,000 in all DD experiments. We only use the dev
set for model development.

The Stanford CRF-based NER tagger was used
as the monolingual component in our models
(Finkel et al., 2005). It also serves as a state-
of-the-art monolingual baseline for both English
and Chinese. For English, we use the default tag-
ger setting from Finkel et al. (2005). For Chi-
nese, we use an improved set of features over the
default tagger, which includes distributional sim-
ilarity features trained on large amounts of non-
overlapping data. The exact features used are
omitted here for brevity, but will be released to-
gether with our code for replicating our results.

We train the two CRF models on all portions
of the OntoNotes corpus that are annotated with
named entity tags, except the parallel-aligned por-
tion which we reserve for development and test
purposes. In total, there are about 660 train-
ing documents (⇠16k sentences) for Chinese and
1,400 documents (⇠39k sentences) for English.

Out of the 18 named entity types that are an-
notated in OntoNotes, which include person, lo-
cation, date, money, and so on, we select the four
most commonly seen named entity types for evalu-
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•  Solve � with � DD � (Dual � Decomposition) � 

NER-Chinese NER-English word alignment
P R F1 P R F1 P R F1 AER

HMM-WA - - - - - - 90.43 40.95 56.38 43.62
Mono-CRF 82.50 66.58 73.69 84.24 78.70 81.38 - - - -
Bi-NER 84.87 75.30 79.80 84.47 81.45 82.93 - - - -
Bi-NER-WA 84.42 76.34 80.18 84.25 82.20 83.21 77.45 50.43 61.09 38.91
Bi-NER-WA+NC 84.25 75.09 79.41 84.28 82.17 83.21 76.67 54.44 63.67 36.33

Table 2: Joint alignment and NER test results. +NC means incorporating additional neighbor constraints
from DeNero and Macherey (2011) to the model. Best number in each column is highlighted in bold.
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Figure 4: An example output of our BI-NER-WA model. Dotted alignment links are the oracle, dashed
links are alignments from HMM baseline, and solid links are outputs of our model. Entity tags in gold
are the gold-standard tags; in crimson are baseline output, and in green are output from our model.

nese tags are arguably more useful than the origi-
nal tags assigned by the baseline model.

In terms of word alignment, the HMM models
failed badly on this example because of the long
distance swapping phenomena. The two unidirec-
tional HMMs also have strong disagreements over
the alignments, and the resulting baseline aligner
output only recovers two links. If we were to take
this alignment as fixed input, most likely we would
not be able to recover the error over e11, but the
joint decoding method successfully recovered 4
more links, and indirectly resulted in the NER tag-
ging improvement discussed above.

8 Related Work

The idea of employing bilingual resources to im-
prove over monolingual systems has been ex-
plored by much previous work. For example,
Huang et al. (2009) improved parsing performance
using a bilingual parallel corpus. In the NER
domain, Li et al. (2012) presented a cyclic CRF
model very similar to our BI-NER model, and
performed approximate inference using loopy be-
lief propagation. The feature-rich CRF formula-
tion of bilingual edge potentials in their model is
much more powerful than our simple PMI-based
bilingual edge model. Adding a richer bilingual

edge model might well further improve our results,
and this is a possible direction for further experi-
mentation. However, a big drawback of this ap-
proach is that training such a feature-rich model
requires manually annotated bilingual NER data,
which can be prohibitively expensive to generate.
How and where to obtain training signals with-
out manual supervision is an interesting and open
question. One of the most interesting papers in this
regard is Burkett et al. (2010b), which explored
an “up-training” mechanism by using the outputs
from a strong monolingual model as ground-truth,
and simulated a learning environment where a
bilingual model is trained to help a “weakened”
monolingual model to recover the results of the
strong model. It is worth mentioning that since
our method does not require additional training
and can take pretty much any existing model as
“black-box” during decoding, the richer and more
accurate bilingual model learned from Burkett et
al. (2010b) can be directly plugged into our model.

A similar dual decomposition algorithm to ours
was proposed by Riedel and McCallum (2011)
for biomedical event detection. In their Model
3, the trigger and argument extraction models
are reminiscent of the two monolingual CRFs in
our model; additional binding agreements are en-
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