

Deep Learning in Lexical Analysis and Parsing

Wanxiang Che (HIT) and Yue Zhang (SUTD)

Outline

Content

Task Introduction

Deep Learning Background

Main Statistical Methods

Break

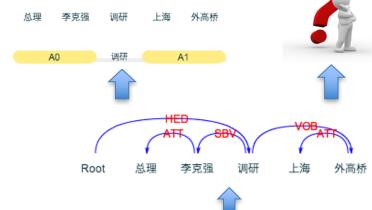
Neural Graph-based Methods

Neural Transition-based Methods

Applications

Part 1: Tasks Introduction

Part 1.1: Lexical Analysis and Parsing


Fundamental NLP Pipeline

Syntactic Parsing

Named Entity

POS Tagging

Word Segmentation

总理/n [李克强 **人名**] 调研/v [上海 外高桥 **地名**] [Premier]/n [Li Keqiang]/Name [study]/v [Shanghai Waigaoqiao]/Location

> 总理/n 李克强/nh 调研/v 上海/ns 外高桥/ns [Premier]/n [Li Keqiang]/nh [study]/v [Shanghai]/ns [Waigaoqiao]/ns

总理 李克<mark>强 调</mark>研 上海 外高桥 Premier Li Keqiang sutdy Shanghai Waigaoqiao

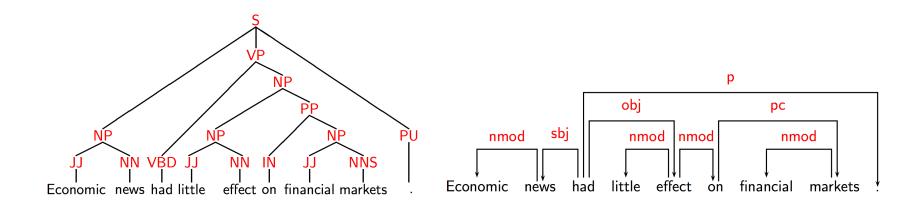
Word Segmentation

- Words are fundamental semantic units
- Chinese has no obvious word boundaries
- Word segmentation
 - Split Chinese character sequence into words
- Ambiguities in word segmentation
 - E.g. 严守一把手机关了
 - 严守一(name)/ 把(ba)/ 手机(mobile)/ 关(turn off)/ 了(le)
 - 严守(name)/ 一把手(first-leader)/ 机关(office)/ 了(le)
 - 严守(name)/ 一把(one time)/ 手机(mobile)/ 关(turn off)/ 了(le)
 - 严守一(name)/ 把手(handle)/ 机关(office)/ 了(le)

Part-of-speech (POS) Tagging

- A POS is a category of words which have similar grammatical properties
 - E.g. noun, verb, adjective
- POS tagging
 - Marking up a word in a text as a particular POS
 - based on both its definition and its context
- Ambiguities in POS Tagging
 - Time flies like an arrow.
 - 制服(subdue)了敌人 vs. 穿着制服(uniform)

Named Entity Recognition (NER)


- Named Entities
 - Persons, locations, organizations, expressions of times, quantities, monetary values, percentages, etc.
- Locating and classifying named entities in text into pre-defined categories
- Ambiguities in NER

Kerry to visit Jordan, Israel Palestinian peace on agenda.


Syntactic Parsing

- Analyzing a natural language string conforming to the rules of a formal grammar, emphasizing subject, predicate, object, etc.
 - Constituency and Dependency Parsing

Semantic Role Labeling

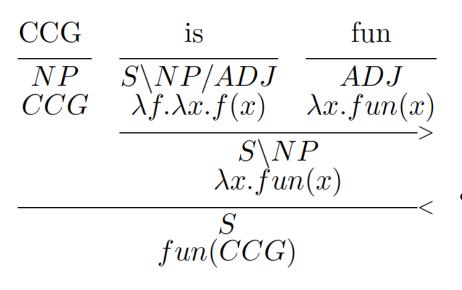
Recognizing predicates and corresponding arguments

Example from (Yih & Toutanova, 2006)


Semantic Role Labeling

- Answer "Who did what to whom when and where"
 - Question Answering
 - Yesterday time, Mary buyer bought a shirt bought thing from Tom seller
 - Whom buyer did Tom seller sell a shirt bought thing to, yesterday time
 - Information Extraction

—


Abstract Meaning Representation (AMR)

The boy wants the girl to believe him.
The boy wants to be believed by the girl.
The boy has a desire to be believed by the girl.
The boy's desire is for the girl to believe him.
The boy is desirous of the girl believing him.

http://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf

Combinatory Categorial Grammars (CCG)

CCG Lexical Entries

 Pair words and phrases with meaning by a CCG category

- CCG Categories
 - Basic building block
 - Capture syntactic and semantic information jointly

Part 1.2: Structured Prediction

Structured Prediction

- Predicting structured objects, rather than single value
- Output structures influence each other
- Categories
 - Sequence segmentation
 - Sequence labeling / Tagging
 - Trees
 - Graphs

15

Sequence Segmentation

- Break a sequence into contiguous parts
- For example: Word Segmentation
 - Input
 - 严守一把手机关了
 - Output
 - 严守一/ 把/ 手机/ 关/ 了/
- More examples:
 - Sentence segmentation
 - Paragraph segmentation
 - NER

16

Sequence Labeling/Tagging

- Given an input sequence, produce a label sequence of equal length
- Each label is drawn from a small finite set
- Label influence each other
- For example: POS tagging
 - Input
 - Profits soared at Boeing Co., easily topping forecasts on Wall Street, ...
 - Output
 - Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV ...

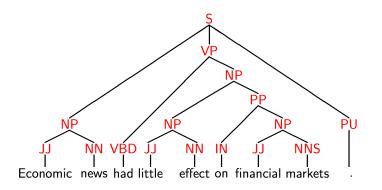
Word Segmentation as Sequence Labeling

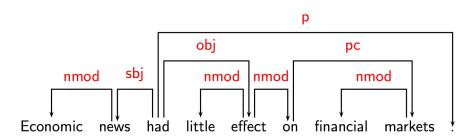
- Input
 - 严守一把手机关了
- Output
 - 严守一/ 把/ 手机/ 关/ 了/
- Alternative Output (Tagging)
 - 严/B 守/I 一/I 把/B 手/B 机/I 关/B 了/B
- Where
 - B: Begin of a word; I: Inside of a word

NER as Sequence Labeling

- Input
 - Profits soared at Boeing Co., easily topping forecasts on Wall Street, ...
- Output
 - Profits soared at [Boeing Co. ORG], easily topping forecasts on [Wall Street LOC], ...
- Alternative Output (Tagging)
 - Profits/O soared/O at/O Boeing/B-ORG Co./I-ORG ,/O easily/O topping/O forecasts/O on/O Wall/B-LOC Street/I-LOC ,/O ...
- Where
 - B: Begin of entity XXX; I: Inside of entity XXX; O: Others

Semantic Role Labeling as Sequence Labeling


- Input
 - Yesterday, Mary bought a shirt from Tom
- Output
 - [Yesterday time], [Mary buyer] bought/pred [a shirt merchandise] from [Tom seller]
- Alternative Output (Tagging)
 - Yesterday/B-time ,/O Mary/B-buyer bought/pred a/B-merchandise shirt/I-merchandise from/O Tom/B-seller
- Where
 - B: Begin; I: Inside; O: Others


CCG Supertagging as Sequence Labeling

frequency	# cat types	# cat tokens in		# sentences in 2-21		# cat tokens in		# sentences in 00	
cut-off		2-21 not in cat set		with missing cat		00 not in cat set		with missing cat	
1	1 225	0		0		12	(0.03%)	12	(0.6%)
10	409	1 933	(0.2%)	1712	(4.3%)	79	(0.2%)	69	(3.6%)

Trees

- All kinds of algorithms converting sentences to tree or graph structures
 - Constituency and Dependency Parsing

Conclusion

- NLP Tasks
 - Word segmentation, POS tagging, named entity recognition
 - Constituent/dependency parsing
 - Semantic (graph) dependency parsing
 - AMR
- Structured Prediction
 - Sequence segmentation
 - Sequence labeling / Tagging
 - Trees