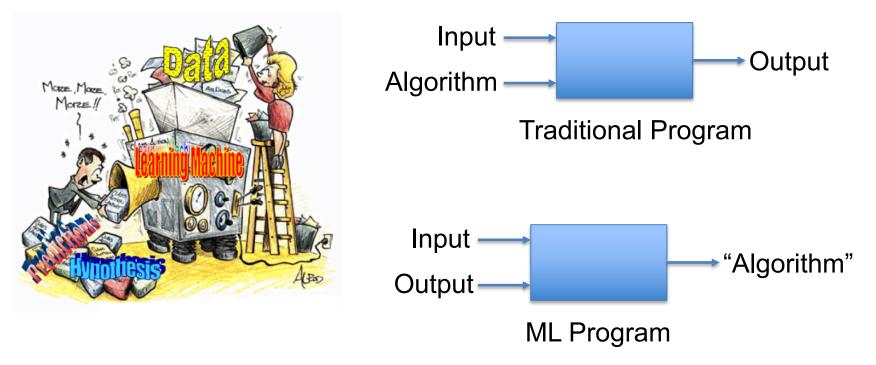
Part 2: Deep Learning

Part 2.1: Deep Learning Background

What is Machine Learning?

• From Data to Knowledge



A Standard Example of ML

- The MNIST (Modified NIST) database of hand-written digits recognition
 - Publicly available
 - A huge amount about how well various ML methods do on it
 - 60,000 + 10,000 hand-written digits (28x28 pixels each)

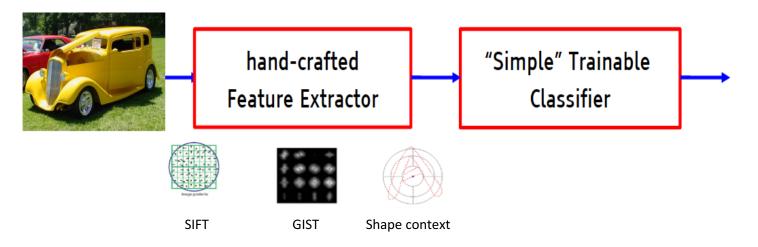
:	0	0	0	0	0	0	0	0	0	0
)	J))	J)	J))	J
	2	J	2	2	2	Z	2	2	Z	Z
	3	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	4	4	4
	S	2	2	S	2	2	2	S	2	S
	4	4	4	4	4	4	4	4	4	4
	7	7	7	7	7	7	7	7	7	7
	8	8	8	8	8	8	8	8	8	8
	9	q	q	q	9	9	9	9	વ	9

Very hard to say what makes a 2

00011(1112 222222333 3449445535 447777888 888194999

Traditional Model (before 2012)

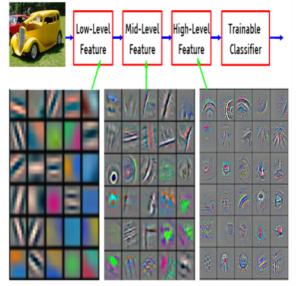
- Fixed/engineered features + trainable classifier
 - Designing a feature extractor requires considerable efforts by experts



Deep Learning (after 2012)

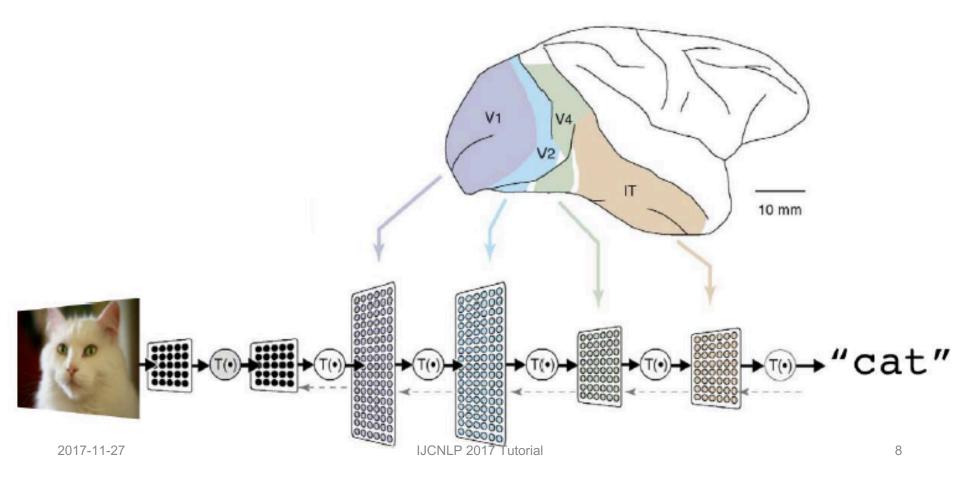
- Learning Hierarchical Representations
- DEEP means more than one stage of non-linear feature

transformation



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Deep Learning Architecture



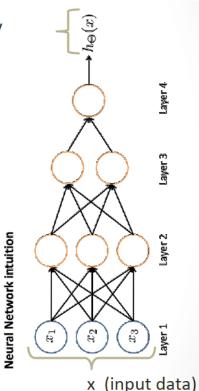
Deep Learning is Not New

• 1980s technology (Neural Networks)

(label) y

Supervised learning

- Given x and y, learn p(y|x)
- Is this photo, x, a "cat", y?

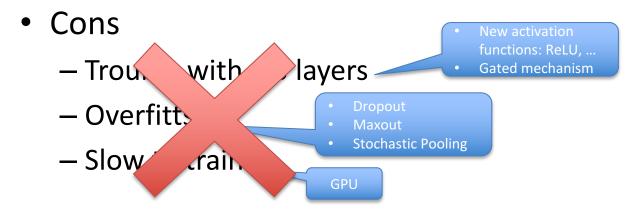


About Neural Networks

- Pros
 - Simple to learn p(y|x)
 - Performance is OK for shallow nets
- Cons
 - Trouble with > 3 layers
 - Overfitts
 - Slow to train

Deep Learning beats NN

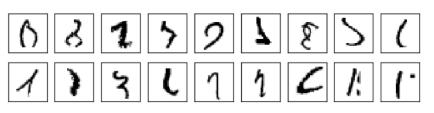
- Pros
 - Simple to learn p(y|x)
 - Performance is OK for shallow nets



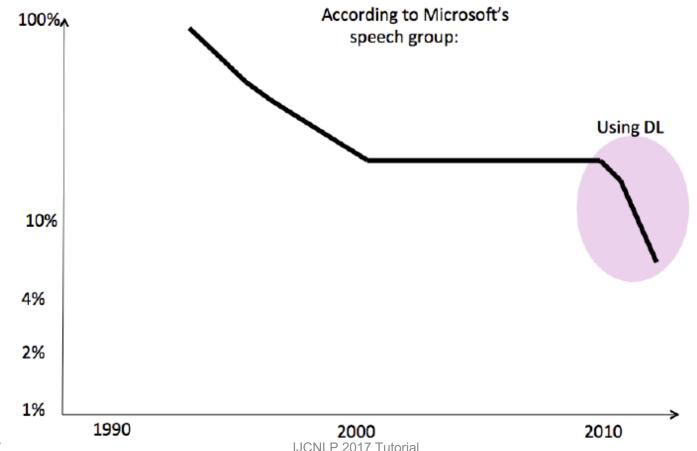
Results on MNIST

- Naïve Neural Network
 - 96.59%
- SVM (default settings for libsvm)
 - 94.35%
- Optimal SVM [Andreas Mueller]
 - 98.56%
- The state of the art: Convolutional NN (2013)

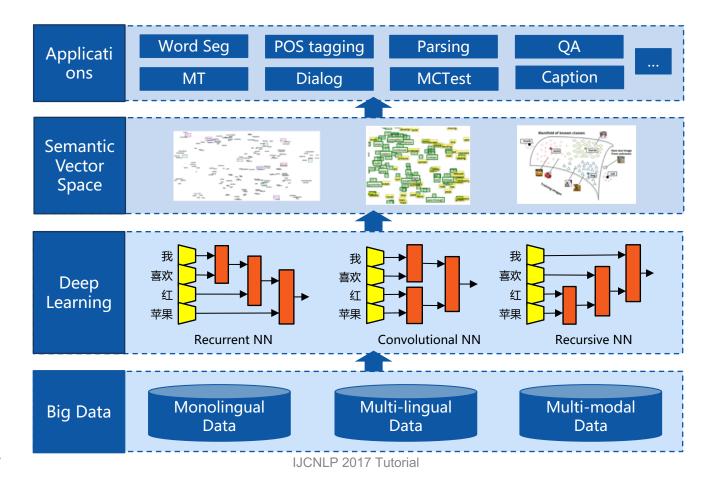
- 99.79%



Deep Learning for Speech Recognition

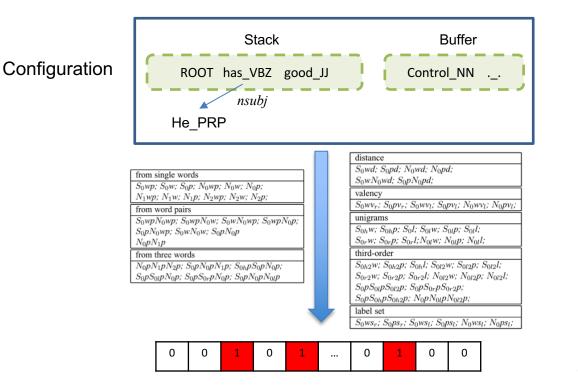


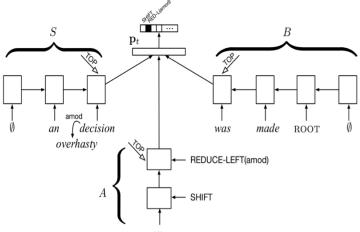
DL for NLP: Representation Learning



2017-11-27

DL for NLP: End-to-End Learning



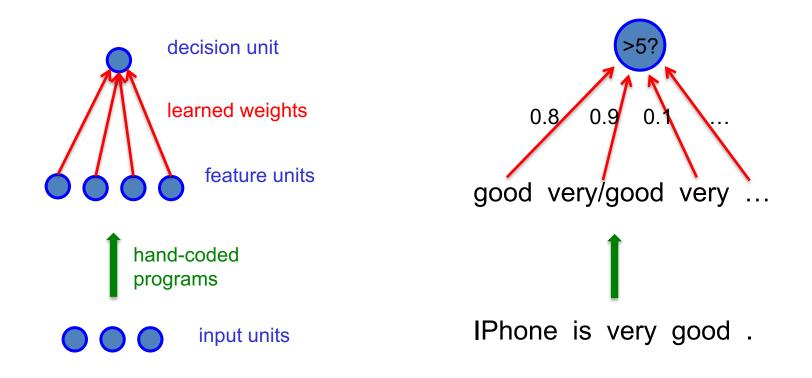


Traditional Parser

Stack-LSTM Parser

Part 2.2: Feedforward Neural Networks

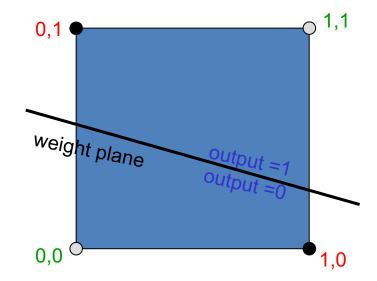
The Standard Perceptron Architecture



The Limitations of Perceptrons

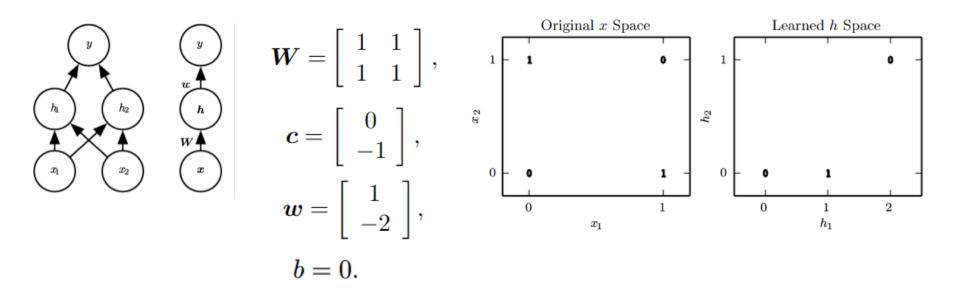
The hand-coded features

- Great influence on the performance
- Need lots of cost to find suitable features
- A linear classifier with a hyperplane
 - Cannot separate non-linear data, such as XOR function cannot be learned by a single-layer perceptron



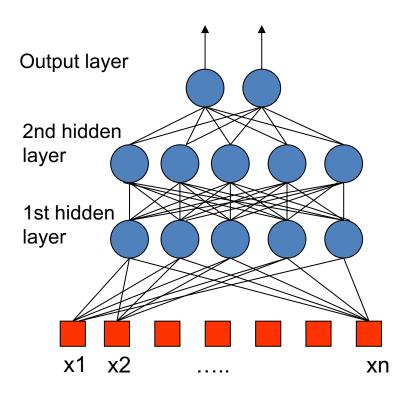
The positive and negative cases cannot be separated by a plane

Learning with Non-linear Hidden Layers



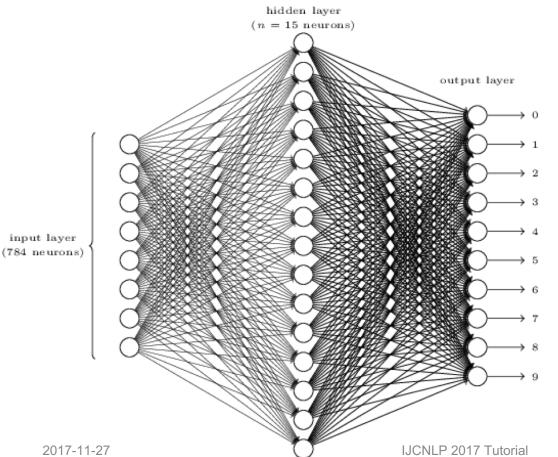
 $f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$

Feedforward Neural Networks

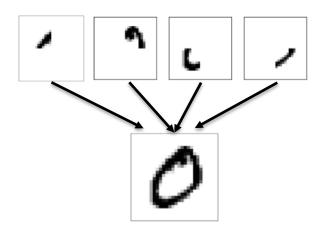


- Multi-layer Perceptron (MLP)
- The information is propagated from the inputs to the outputs
- NO cycle between outputs and inputs
- Learning the weights of hidden units is equivalent to learning features
- Networks without hidden layers are very limited in the input-output mappings
 - More layers of linear units do not help. Its still linear
 - Fixed output non-linearities are not enough

Multiple Layer Neural Networks



- What are those hidden neurons doing?
 - Maybe represent outlines



General Optimizing (Learning) Algorithms

• Gradient Descent

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \epsilon \nabla_{\boldsymbol{\theta}} \sum_{t} L(f(\boldsymbol{x}^{(t)}; \boldsymbol{\theta}), \boldsymbol{y}^{(t)}; \boldsymbol{\theta})$$

- Stochastic Gradient Descent (SGD)
 - Minibatch SGD (m > 1), Online GD (m = 1)

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k .

Require: Initial parameter $\boldsymbol{\theta}$

while stopping criterion not met do

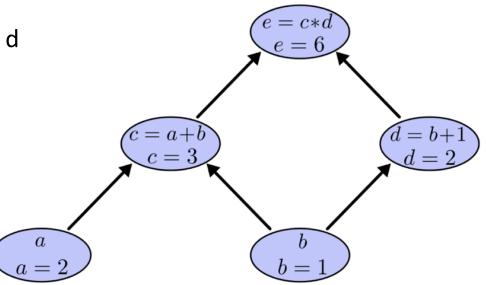
Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$

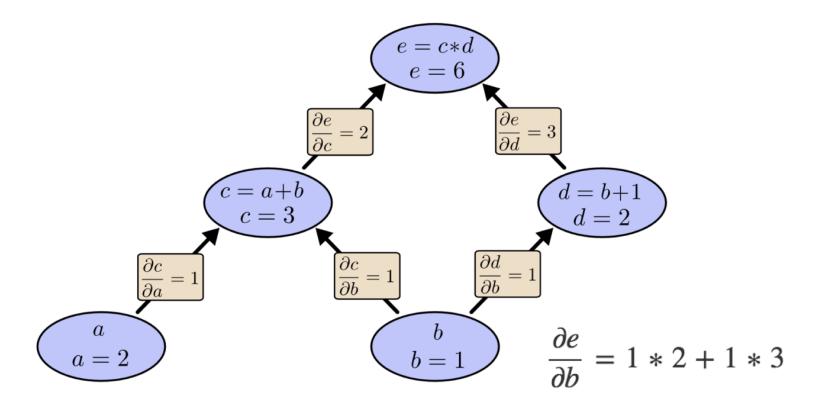
Computational/Flow Graphs

- Describing Mathematical Expressions
- For example

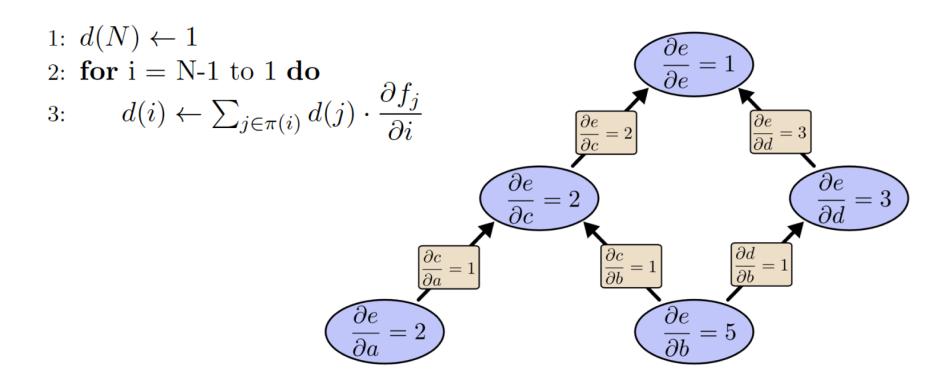
$$-$$
 If a = 2, b = 1



Derivatives on Computational Graphs



Computational Graph Backward Pass (Backpropagation)



Part 2.3: Recurrent and Other Neural Networks

Language Models

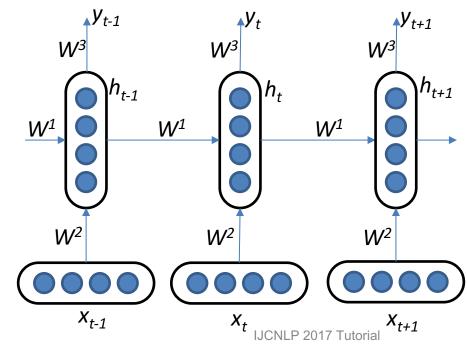
- A language model computes a probability for a sequence of word: P(w₁, … w_n) or predicts a probability for the next word: P(w_{n+1}|w₁, … w_n)
- Useful for machine translation, speech recognition, and so on
 - Word ordering
 - P(the cat is small) > P(small the is cat)
 - Word choice
 - *P*(there are **four** cats) > *P*(there are **for** cats)

Traditional Language Models

- An incorrect but necessary Markov assumption!
 - Probability is usually conditioned on *n* previous words
 - $P(w_1, \cdots w_n) = \\ \prod_{i=1}^m P(w_i | w_1, \cdots, w_{i-1}) \approx \prod_{i=1}^m P(w_i | w_{i-(n-1)}, \cdots, w_{i-1})$
- Disadvantages
 - There are A LOT of n-grams!
 - Cannot see too long history

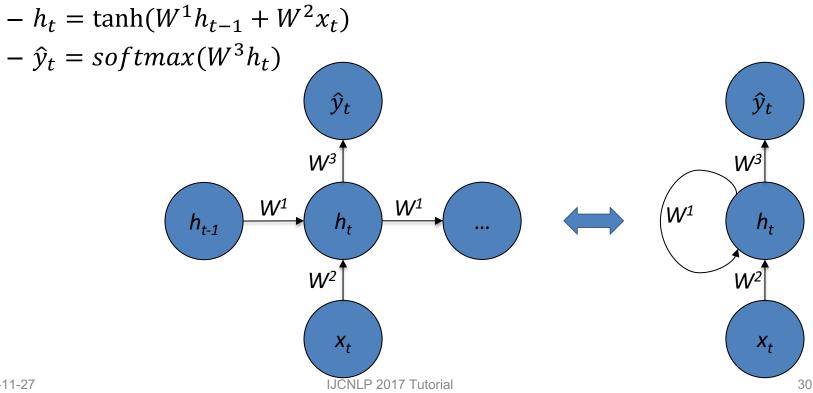
Recurrent Neural Networks (RNNs)

- Condition the neural network on all previous inputs
- RAM requirement only scales with number of inputs



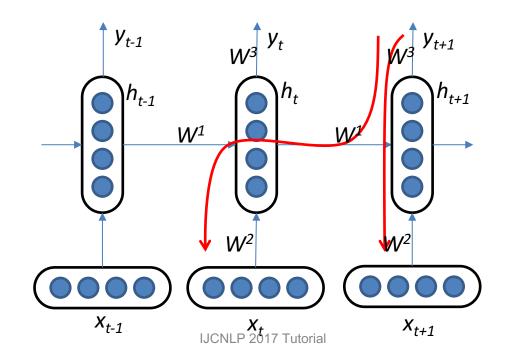
Recurrent Neural Networks (RNNs)

• At a single time step t



Training RNNs is hard

- Ideally inputs from many time steps ago can modify output y
- For example, with 2 time steps



BackPropagation Through Time (BPTT) \hat{y}_t

- Total error is the sum of each error at time step t
- $-\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W}$ • $\frac{\partial E_t}{\partial W^3} = \frac{\partial E_t}{\partial v_t} \frac{\partial y_t}{\partial W^3}$ is easy to be calculated
- But to calculate $\frac{\partial E_t}{\partial W^1} = \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial W^1}$ is hard (also for W^2) Because $h_t = \tanh(W^1 h_{t-1} + W^2 x_t)$ depends on h_{t-1} , which depends on W^1 and h_{t-2} , and so on.

• So
$$\frac{\partial E_t}{\partial W^1} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W^1}$$

W³

 W^2

h₊

x_t

 W^1

The vanishing gradient problem

•
$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_k}{\partial w}, h_t = \tanh(W^1 h_{t-1} + W^2 x_t)$$

•
$$\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}} = \prod_{j=k+1}^t W^1 \text{diag}[\tanh'(\cdots)]$$

•
$$\left\|\frac{\partial h_j}{\partial h_{j-1}}\right\| \leq \gamma \|W^1\| \leq \gamma \lambda_1$$

- where γ is bound $\|\text{diag}[\tanh'(\cdots)]\|$, λ_1 is the largest singular value of W^1

•
$$\left\|\frac{\partial h_t}{\partial h_k}\right\| \leq (\gamma \lambda_1)^{t-k} \rightarrow 0$$

- if $\gamma \lambda_1 < 1$, this can become very small (vanishing gradient)
- if $\gamma \lambda_1 > 1$, this can become very large (exploding gradient)
 - Trick for exploding gradient: clipping trick (set a threshold)

A "solution"

- Intuition
 - Ensure $\gamma \lambda_1 \ge 1 \rightarrow$ to prevent vanishing gradients
- So ...
 - Proper initialization of the W
 - To use ReLU instead of tanh or sigmoid activation functions

A better "solution"

• Recall the original transition equation

$$-h_t = \tanh(W^1 h_{t-1} + W^2 x_t)$$

• We can instead update the state **additively**

$$-u_t = \tanh(W^1 h_{t-1} + W^2 x_t)$$

$$-h_t = h_{t-1} + u_t$$

$$\| \partial h_t \| = \| \partial u_t \|$$

- then,
$$\left\|\frac{\partial h_t}{\partial h_{t-1}}\right\| = 1 + \left\|\frac{\partial u_t}{\partial h_{t-1}}\right\| \ge 1$$

– On the other hand

•
$$h_t = h_{t-1} + u_t = h_{t-2} + u_{t-1} + u_t = \cdots$$

 \hat{y}_t

h_t

 X_t

*h*_{t-1}

•••

A better "solution" (cont.)

Interpolate between old state and new state ("choosing to forget")

$$-f_t = \sigma \big(W^f x_t + U^f h_{t-1} \big)$$

$$-h_t = f_t \odot h_{t-1} + (1 - f_t) \odot u_t$$

• Introduce a separate **input gate** *i*_t

$$-i_t = \sigma \big(W^i x_t + U^i h_{t-1} \big)$$

$$-h_t = f_t \odot h_{t-1} + i_t \odot u_t$$

• Selectively expose memory cell c_t with an **output gate** o_t

Tutorial

$$-o_t = \sigma(W^o x_t + U^o h_{t-1})$$
$$-c_t = f_t \odot c_{t-1} + i_t \odot u_t$$
$$-h_t = o_t \odot \tanh(c_t)$$

Long Short-Term Memory (LSTM)

$$u_{t} = \tanh \left(Wh_{t-1} + Vx_{t}\right)$$

$$f_{t} = \text{sigmoid} \left(W_{f}h_{t-1} + V_{f}x_{t}\right)$$

$$i_{t} = \text{sigmoid} \left(W_{i}h_{t-1} + V_{i}x_{t}\right)$$

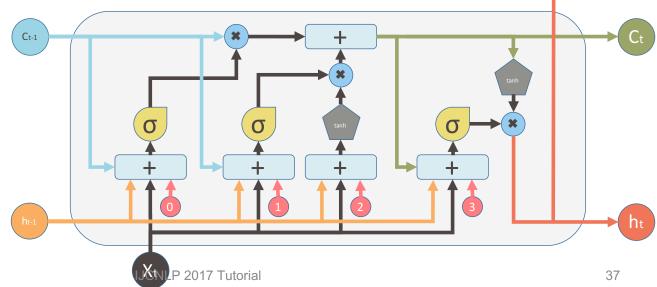
$$o_{t} = \text{sigmoid} \left(W_{o}h_{t-1} + V_{o}x_{t}\right)$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot u_{t}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

$$y_{t} = Uh_{t}$$
(c)

- Hochreiter & Schmidhuber, 1997
- LSTM = additive updates + gating



Gated Recurrent Unites, GRU (Cho et al. 2014)

- Main ideas
 - Keep around memories to capture long distance dependencies
 - Allow error messages to flow at different strengths depending on the inputs
- Update gate
 - Based on current input and hidden state

$$-z_t = \sigma(W^z x_t + U^z h_{t-1})$$

- Reset gate
 - Similarly but with different weights

$$-r_t = \sigma(W^r x_t + U^r h_{t-1})$$

GRU

• Memory at time step combines current and previous time steps

$$-h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}$$

- Update gate z controls how much of past state should matter now
 - If z closed to 1, then we can copy information in that unit through many time steps → less vanishing gradient!
- New memory content
 - $-\tilde{h}_t = \tanh(Wx_t + r_t \odot Uh_{t-1})$
 - If reset gate r unit is close to 0, then this ignores previous memory and only stores the new input information \rightarrow allows model to drop information that is irrelevant in the future

LSTM vs. GRU

- No clear winner!
- Tuning hyperparameters like layer size is probably more important than picking the ideal architecture
- GRUs have fewer parameters and thus may train a bit faster or need less data to generalize
- If you have enough data, the greater expressive power of LSTMs may lead to better results.

More RNNs

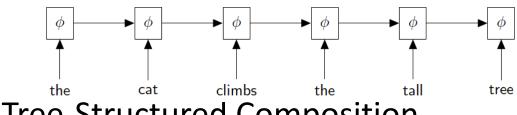
• Bidirectional RNN

• Stack Bidirectional RNN

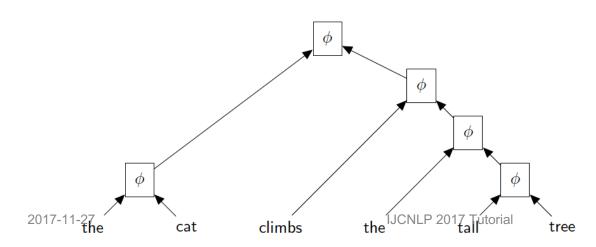


Tree-LSTMs

• Traditional Sequential Composition



• Tree-Structured Composition

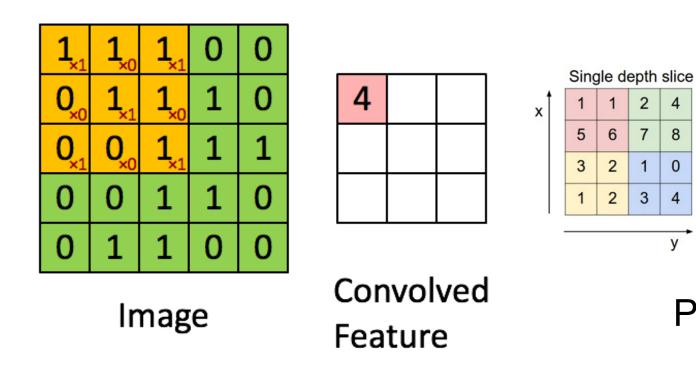


More Applications of RNN

- Neural Machine Translation
- Handwriting Generation
- Image Caption Generation

•

Convolution Neural Network



CS231n Convolutional Neural Network for Visual Recognition. 2017-11-27 IJCNLP 2017 Tutorial

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling

2

7

1

3

4

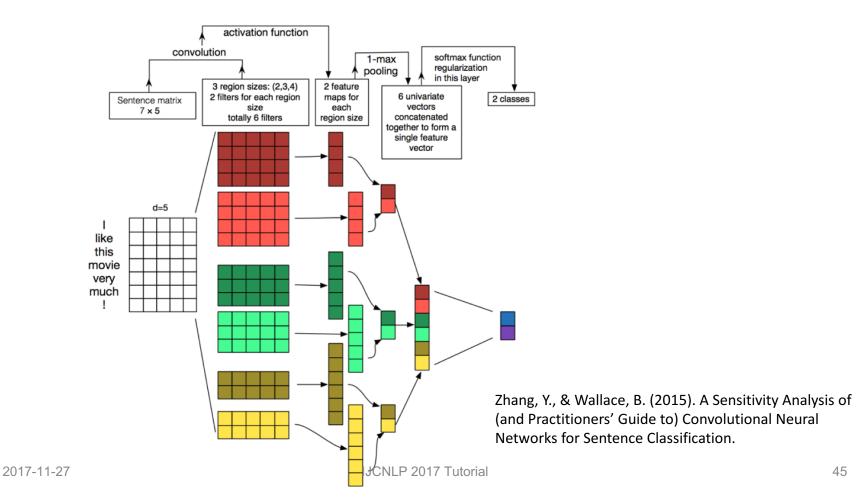
8

0

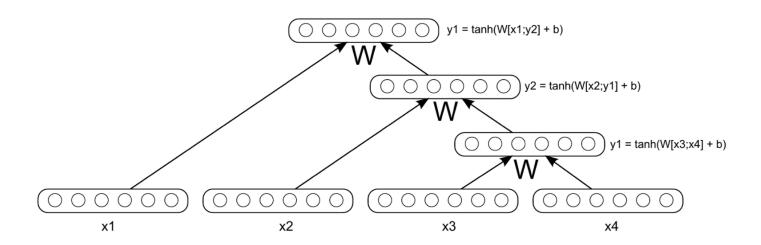
4

У

CNN for NLP



Recursive Neural Network



Socher, R., Manning, C., & Ng, A. (2011). Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Network. NIPS. 2017-11-27

IJCNLP 2017 Tutorial

Summary

- Deep Learning
 - Representation Learning
 - End-to-end Learning
- Popular Networks
 - Feedforward Neural Networks
 - Recurrent Neural Networks
 - Convolutional Neural Networks