Part 2: Deep Learning



Part 2.1: Deep Learning Background



What is Machine Learning?

* From Data to Knowledge

Input ——

: Output
Algorithm —

Traditional Program

ML Program
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A Standard Example of ML

 The MNIST (Modified NIST) database of
hand-written digits recognition
— Publicly available

— A huge amount about how well various ML
methods do on it

— 60,000 + 10,000 hand-written digits (28x28
pixels each)
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Traditional Model (before 2012)

* Fixed/engineered features + trainable classifier

— Designing a feature extractor requires considerable efforts by
experts

hand-crafted A “Simple” Trainable

Feature Extractor Classifier

SIFT GIST Shape context
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Deep Learning (after 2012)

* Learning Hierarchical Representations
 DEEP means more than one stage of non-linear feature

transformation . . .
Low-Level| [Mid-Level| |High-Levell | Trainable
— — —
Feature | | Feature | | Feature | | Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeller & Ferqus 2013
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Deep Learning Architecture
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Deep Learning is Not New

e 1980s technology (Neural Networks)

(label) y 5
: . 2
Supervised learning /[
Given xand vy, learn p(y|x) ( J %
Is this photo, x, a “cat”, y? /\
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About Neural Networks

* Pros

— Simple to learn p(y|x)

— Performance is OK for shallow nets
* Cons

— Trouble with > 3 layers

— Overfitts

— Slow to train



Deep Learning beats NN

* Pros
— Simple to learn p(y|x)
— Performance is OK for shallow nets

e Cons

* New activation
functions: RelU, ...
* Gated mechanism

* Dropout
* Maxout
*  Stochastic Pooling
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 Naive Neural Network

— 96.59%

— 94.35%

— 98.56%

— 99.79%

2017-11-27

Results on MINIST

SVM (default settings for libsvm)

Optimal SVM [Andreas Mueller]

The state of the art: Convolutional NN (2013)
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Deep Learning for Speech Recognition

100%a According to Microsoft’s
speech group:

Using DL

10%

4%

2%

1%

v

1990 2000 2010
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Vector
Space

Deep
Learning

Recurrent NN Convolutional NN Recursive NN
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Configuration

2017-11-27

DL for NLP: End-to-End Learning

He_PRP

Stack

ROOT has_VBZ good_JJ

/mubj

Buffer

Control_NN . .

distance

from single words

Sowp;: Sow; Sop; Nowp; Now; Nop;
Niwp; Nyw; Nip; Nowp; Now; Nop;

Sowd; Sopd; Nowd; Nopd;
SowNowd; SopNopd;

valency

from word pairs

Sowvy; Sopvy; Sowvy, Sopvi; Nowvy: Nopvy;

NopNp

SowpNowp; SowpNow; SowNowp; SowpNop;
SopNowp; SowNow; SopNop

unigrams

Sonw; Sonps Sol; Soiw; Soip; Soils
Sorw; Sorp; Sorl; Naow; Noip; Noil;

from three words

third-order

NopN1pNop; SopNopN1p; SonpSop Nop;
SopSopNop: SopSorpNop: SopNopNop

Sonaw; Sonap: Sonl: Soizw: Sowap: Soials
Soraw; Sorap; Sor /
SopSoipSoizp: SopSorpSor2p;

SopSonpSonzp; NopNowpNoizp:

i Nozw; Nowap: Noial:

label set

Sows,.; Sops,; Sowsi,; Sopsi; Nowsy; Nopsi;

0 O . O . -

Traditional Parser

[JCNLP 2017 Tutorial
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amod
an {\ decision was made
overhasty QZ
REDUCE-LEFT(amod)

A SHIFT

Stack-LSTM Parser

ROOT
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Part 2.2: Feedforward Neural Networks



The Standard Perceptron Architecture

decision unit

learned weights /07/ (\\
feature units

good very/good very ...

hand-coded
programs

@ @ @ nputunits IPhone is very good .
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The Limitations of Perceptrons

* The hand-coded features 0.1 1.1
— Great influence on the performance
— Need lots of cost to find suitable features

* A linear classifier with a hyperplane weig

— Cannot separate non-linear data, such as
XOR function cannot be learned by a
single-layer perceptron 0,0 1,0

The positive and negative cases
cannot be separated by a plane

2017-11-27 [JCNLP 2017 Tutorial 18



Learning with Non-linear Hidden Layers

_ Original x Space Learned h Space
1 1 T T T T T
° ’ w=| } o o | i} .
B o o

flz;W,e,w,b) =w' max{0, W'z +c} +b.
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Feedforward Neural Networks

e Multi-layer Perceptron (MLP)

* The information is propagated from
the inputs to the outputs

* NO cycle between outputs and inputs

Output layer

2nd hi : . : :
|ar;,ir aden * Learning the weights of hidden units
, Q is equivalent to learning features
1st hidden |2 === * Networks without hidden layers are
layer very limited in the input-output
mappings

— More layers of linear units do not
help. Its still linear

— Fixed output non-linearities are not

x1 x2 ... XN
enough
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Multiple Layer Neural Networks

hidden layer
(nn = 15 neurons)

) * What are those hidden
/// neurons doing?
= // /f ’ — Maybe represent

= outlines

input layer

(o 4 : : = ‘
TE4d neurons e
(T84 neurons) = == 5 { ) J
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General Optimizing (Learning) Algorithms

e Gradient Descent
0<—9+ev92 f(@":6),4":0)

e Stochastic Gradlent Descent (SGD)
— Minibatch SGD (m > 1), Online GD (m = 1)

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate €.
Require: Initial parameter 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:r:(]) ..... (™) } with
corresponding targets 2/%).
Compute gradient estimate: g +,—” Vo>, L(f(z");0),y®)
Apply update: @ «+ 0 —eg

end while
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Computational/Flow Graphs

* Describing Mathematical Expressions

* For example
—e=(a+b)*(b+1)
ec=a+b,d=b+1,e=c*d =

—Ifa=2,b=1 //’ \\\
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Derivatives on Computational Graphs

e = cxd
e=206

™
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Computational Graph Backward Pass (Backpropagation)

1: d(N)(—l P
2: fori = N-1to 1 do o/ &=1
| | - %
3 d(i) — Yjen dl) - 52 —
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Part 2.3: Recurrent and Other
Neural Networks



Language Models

* Alanguage model computes a probability for a sequence of
word: P(wq, - w,,) or predicts a probability for the next word:
P(Wn+1|W1r Wn)

* Useful for machine translation, speech recognition, and so on

— Word ordering

* P(the cat is small) > P(small the is cat)

— Word choice

* P(there are four cats) > P(there are for cats)



Traditional Language Models

* Anincorrect but necessary Markov assumption!
— Probability is usually conditioned on n previous words
— P(wy, - wy) =
iz=1 Pwilwy, -, wi_1) = [[i21 PWi|Wimn—1y, " Wi—1)
* Disadvantages
— There are A LOT of n-grams!
— Cannot see too long history



Recurrent Neural Networks (RNNs)

* Condition the neural network on all previous inputs
* RAM requirement only scales with number of inputs

Via Vi Vir
ht—l ht ht+1

O

w!? w!? w: | @
O

@

=

;5

(eo000) (0000) (0000)

X1 X - Xts1
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Recurrent Neural Networks (RNNs)

 Atasingletimestept
— ht — tanh(Wlht_l + szt)
— 9, = softmax(W?3h,)
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Training RNNs is hard

* |deally inputs from many time steps ago can modify output y
* For example, with 2 time steps

i’tl V‘ﬁ\y t ﬁ\y t+1
h t-1 ‘ h t ‘ h t+1
w! @

—>

®)
c o
(e000) (OM;“) (::00)

Xt.1 X ,
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BackPropagation Through Time (BPTT)

e Total error is the sum of each error at time step t
OE T OE:

~ow = Lt=1gy
dE, _ OE; dy; .
o 0t — 22t 22 is aasy to be calculated

ow3 9y ows3
aEt aEt ayt aht . 2
= —is hard (also for W
6W1 ayt aht ow ( )

* Because h; = tanh(Wlht 1+ szt) depends on h;_4,
which depends on W1 and h;_,, and so on.

aEt Z 6Et 6yt 6ht ahk
O w1 k=19y, dh, dhy W1

e But to calculate
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The vanishing gradient problem

aEt _ t aEt ayt 6ht 6hk _ 1 2
W — Zk=1 aW, ht — tanh(W ht—l + W xt)

0yt Oht|0hy
O AU=kH1gn T j=k+1 W diag[tanh’(--+ )]
on, )
j—1
— where y is bound ||diag[tanh’(:--)]|l, A;is the largest singular value of W'
oh )
— | < ra)t >0
Ol

— if yA; < 1, this can become very small (vanishing gradient)
— if yA; > 1, this can become very large (exploding gradient)
* Trick for exploding gradient: clipping trick (set a threshold)



A “solution”

* |ntuition

— Ensure yA; = 1 = to prevent vanishing gradients

* So ...
— Proper initialization of the W

— To use RelLU instead of tanh or sigmoid activation
functions



A better “solution”

* Recall the original transition equation
— h, = tanh(Wth._; + W?x,)

* We can instead update the state additively
—u, = tanh(Wth,_{ + W?x,)

—hy =he—1 +uy
aht H aut
— = =
then, Haht_l 1+ on_ |l = 1

— On the other hand
¢ ht = ht—l + U = ht—Z + Ur—1 + U = =
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A better “solution” (cont.)

* Interpolate between old state and new state (“choosing to
forget”)

— fi=o(W'x; + U h;_)
—he =i Oh 1+ (A —f) Oue
* Introduce a separate input gate i,
— iy = o(Wix, + Ulhe_y)
—h =f Ohe1 +Hi Oug
* Selectively expose memory cell ¢c; with an output gate o,
— 0, =o(W°x; + U%h_y)
— e =ft Oco1 +i Oug
— hy = o O tanh(c;)



Long Short-Term Memory (LSTM)

w = tanh (Whey + Var) * Hochreiter & Schmidhuber, 1997
fi = sigmoid (W rhy—1 + Vi)

ir = sigmoid (W;he_ + Vizr)  ® LSTM = additive updates + gat@g
o = sigmoid (Wohi—1 + Voay)

= ft®c—1+ i Ouy
ht = o ® tanh(c¢;) @

k] éﬂ

Q Q TO TQJ
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Gated Recurrent Unites, GRU (Cho et al. 2014)

* Main ideas
— Keep around memories to capture long distance dependencies

— Allow error messages to flow at different strengths depending on
the inputs

* Update gate
— Based on current input and hidden state
—zr =0o(W?xy + U*hs_q)

* Reset gate
— Similarly but with different weights

— T = O-(Wrxt + Urht_l)



GRU

* Memory at time step combines current and previous time steps

—h=zQhi1+(1-2z)0Oh
— Update gate z controls how much of past state should matter now

* If zclosed to 1, then we can copy information in that unit through many time
steps -2 less vanishing gradient!

* New memory content
— hy = tanh(Wx, + 1. © Uhy_q)
— If reset gate r unit is close to 0, then this ignores previous memory and

only stores the new input information = allows model to drop
information that is irrelevant in the future



LSTM vs. GRU

No clear winner!

Tuning hyperparameters like layer size is probably more
important than picking the ideal architecture

GRUs have fewer parameters and thus may train a bit
faster or need less data to generalize

If you have enough data, the greater expressive power
of LSTMs may lead to better results.



More RNNs

e Bidirectional RNN e Stack Bidirectional RNN
Y e PY ° ° Y f [ /‘ f

h o o o o o o °

x e ° °

2017-11-27



Tree-LSTMs

* Traditional Sequential Composition
¢ > O > O > O > 0 > &
R
the cat climbs the tall tree

* Tree-Structured Composition
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More Applications of RNN

Neural Machine Translation
Handwriting Generation
Image Caption Generation



Convolution Neural Network
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Image

Convolved
Feature

CS231n Convolutional Neural Network for Visual Recognition.
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Single depth slice

N 2 | 4
max pool with 2x2 filters
o6 7|8 and stride 2
3 | 2 i
1| 2 R
- >

Pooling
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activation function

convolution

!

CNN for NLP

N 3 region sizes: (2,3,4)
Sentence matrix 2 filters for each region
7%x5 size
totally 6 filters

like
this
movie

very
much

1-max softmax function
\ lin regularization

v poaling y I inthis layer

2 feature Y

maps for 6 univariate 2 classes

each vectors [:
region size concatenated
together to form a
single feature
vector

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of
(and Practitioners’ Guide to) Convolutional Neural
Networks for Sentence Classification.
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Recursive Neural Network

(0O O O O O) y1 = tanhWx1:y2] + b)

(Q O Q OO Q) y2 = tanh(W[x2:y1] + b)

CQ O Q O O Q) y1 = tanh(W[x3;x4] + b)

(OCO0000) (OO0 O0O0) (QQQQOQ) (ooooeo)
x1 X2 x3 x4

Socher, R., Manning, C., & Ng, A. (2011). Learning Continuous Phrase Representations and Syntactic Parsing with Recursive

Neural Network. NIPS.
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Summary

* Deep Learning
— Representation Learning
— End-to-end Learning

* Popular Networks
— Feedforward Neural Networks

— Recurrent Neural Networks
— Convolutional Neural Networks



