
Part 2: Deep	Learning

2017-11-27 IJCNLP 2017 Tutorial 1

Part 2.1: Deep	Learning Background

2017-11-27 IJCNLP 2017 Tutorial 2

What	is	Machine	Learning?

• From	Data	to	Knowledge

Input
Algorithm

Output

Traditional Program

Input
Output

“Algorithm”

ML Program
2017-11-27 IJCNLP 2017 Tutorial 3

A	Standard	Example	of	ML

• The	MNIST	(Modified	NIST)	database	of	
hand-written	digits	recognition	
– Publicly	available
– A	huge	amount	about	how	well	various	ML	
methods	do	on	it

– 60,000	+ 10,000 hand-written	digits	(28x28	
pixels	each)

2017-11-27 IJCNLP 2017 Tutorial 4

Very	hard	to	say	what	makes	a	2								

2017-11-27 IJCNLP 2017 Tutorial 5

Traditional Model	(before	2012)

• Fixed/engineered	features	+	trainable	classifier
– Designing	a	feature	extractor	requires	considerable	efforts	by	
experts

SIFT																									GIST														Shape	context

2017-11-27 IJCNLP 2017 Tutorial 6

Deep	Learning (after	2012)

• Learning	Hierarchical	Representations
• DEEP	means	more	than	one	stage	of	non-linear	feature	
transformation	

2017-11-27 IJCNLP 2017 Tutorial 7

Deep	Learning	Architecture	

2017-11-27 IJCNLP 2017 Tutorial 8

Deep	Learning	is	Not	New

• 1980s	technology	(Neural	Networks)

2017-11-27 IJCNLP 2017 Tutorial 9

About	Neural	Networks

• Pros
– Simple	to	learn	p(y|x)
– Performance is OK	for	shallow	nets

• Cons
– Trouble	with	>	3	layers
– Overfitts
– Slow	to	train

2017-11-27 IJCNLP 2017 Tutorial 10

Deep	Learning	beats	NN

• Pros
– Simple	to	learn	p(y|x)

– Performance is OK for	shallow	nets

• Cons
– Trouble	with	>	3	layers

– Overfitts

– Slow	to	train

• Dropout
• Maxout
• Stochastic	Pooling

GPU

• New	activation	
functions:	ReLU,	…

• Gated	mechanism

2017-11-27 IJCNLP 2017 Tutorial 11

Results	on	MNIST

• Naïve	Neural	Network
– 96.59%

• SVM	(default	settings	for	libsvm)
– 94.35%

• Optimal	SVM	[Andreas	Mueller]
– 98.56%

• The	state	of	the	art:	Convolutional	NN	(2013)
– 99.79%

2017-11-27 IJCNLP 2017 Tutorial 12

Deep	Learning	for	Speech	Recognition

2017-11-27 IJCNLP 2017 Tutorial 13

DL for	NLP: Representation Learning

�������� ���
����

� �������� ���
����

� ���������
����

��������

�����
��������

$

#&

A

B%

$

#&

A

B%

$

#&

A

B%

�- ������		 ���!�� �������		 �- ���!��		

�������-�
��-����
���-�

 ����-���
���

� �
��������� �������

��������� ������ ������

��������
"

2017-11-27 IJCNLP 2017 Tutorial 14

DL for	NLP: End-to-End Learning

2017-11-27 IJCNLP 2017 Tutorial 15

ROOT			has_VBZ good_JJ Control_NN ._.

Stack Buffer

He_PRP
nsubj

Configuration

0 0 1 0 1 … 0 1 0 0

Traditional Parser Stack-LSTM Parser

Part 2.2: Feedforward Neural Networks

2017-11-27 IJCNLP 2017 Tutorial 16

feature units

decision unit

input units

hand-coded
programs

learned weights

The	Standard	Perceptron	Architecture

IPhone is very good .

good very/good very …

>5?

0.8 0.9 0.1 …

2017-11-27 IJCNLP 2017 Tutorial 17

The	Limitations	of	Perceptrons

• The	hand-coded	features
– Great	influence	on	the	performance
– Need	lots	of	cost	to	find	suitable	features

• A	linear	classifier	with	a	hyperplane
– Cannot	separate	non-linear	data,	such	as	
XOR function	cannot	be	learned	by	a	
single-layer	perceptron

0,1

0,0 1,0

1,1

weight plane output =1output =0

The positive and negative cases
cannot be separated by a plane

2017-11-27 IJCNLP 2017 Tutorial 18

Learning	with	Non-linear	Hidden	Layers

2017-11-27 IJCNLP 2017 Tutorial 19

Feedforward	Neural	Networks

• Multi-layer	Perceptron	(MLP)
• The	information	is	propagated	from	

the	inputs	to	the	outputs
• NO	cycle	between	outputs	and	inputs
• Learning	the	weights	of	hidden	units	

is	equivalent	to	learning	features	
• Networks	without	hidden	layers	are	

very	limited	in	the	input-output	
mappings
– More	layers	of	linear	units	do	not	

help.	Its	still	linear
– Fixed	output	non-linearities are	not	

enoughx1 x2 xn…..

1st hidden
layer

2nd hidden
layer

Output layer

2017-11-27 IJCNLP 2017 Tutorial 20

Multiple	Layer Neural	Networks

• What	are	those	hidden	
neurons	doing?
– Maybe	represent	
outlines

2017-11-27 IJCNLP 2017 Tutorial 21

General	Optimizing	(Learning)	Algorithms

• Gradient	Descent

• Stochastic	Gradient	Descent	(SGD)	
– Minibatch SGD	(m	>	1),	Online	GD	(m	=	1)

2017-11-27 IJCNLP 2017 Tutorial 22

Computational/Flow Graphs

• Describing	Mathematical	Expressions
• For	example

– e	=	(a	+	b)	*	(b	+	1)
• c	=	a	+	b,	d	=	b	+	1,	e	=	c	*	d

– If	a	=	2,	b	=	1

2017-11-27 IJCNLP 2017 Tutorial 23

Derivatives	on	Computational	Graphs

2017-11-27 IJCNLP 2017 Tutorial 24

Computational	Graph	Backward	Pass	(Backpropagation)

2017-11-27 IJCNLP 2017 Tutorial 25

Part 2.3: Recurrent and Other
Neural Networks

2017-11-27 IJCNLP 2017 Tutorial 26

Language	Models

• A	language	model	computes	a	probability	for	a	sequence	of	
word:	!(#$,⋯#') or	predicts	a	probability	for	the	next	word:	
!(#')$|#$,⋯#')

• Useful	for	machine	translation,	speech	recognition,	and	so	on
– Word	ordering

• P(the	cat	is	small)	>	P(small	the	is	cat)

– Word	choice
• P(there	are	four cats)	>	P(there	are	for cats)

2017-11-27 IJCNLP 2017 Tutorial 27

Traditional	Language	Models

• An	incorrect	but	necessary	Markov	assumption!	
– Probability	is	usually	conditioned	on	n previous	words
– ! "#,⋯"& =
∏ !("*|"#,⋯ ,"*,#) ≈/
0# ∏ !("|"*,(&,#),⋯ ,"*,#)/

*0#
• Disadvantages

– There	are	A	LOT	of	n-grams!
– Cannot	see	too	long	history

2017-11-27 IJCNLP 2017 Tutorial 28

Recurrent	Neural	Networks	(RNNs)

• Condition	the	neural	network	on	all	previous	inputs
• RAM	requirement	only	scales	with	number	of	inputs

W1 W1

ht ht+1ht-1

yt-1 yt yt+1

xt-1 xt xt+1

W1

W2 W2W2

W3 W3W3

2017-11-27 IJCNLP 2017 Tutorial 29

Recurrent	Neural	Networks (RNNs)

• At	a	single	time	step	t
– ℎ" = tanh()*ℎ"+* +)-.")
– 01" = 234567.()8ℎ")

ht …ht-1

01"

xt

W1

W2

W3

ht

01"

xt

W1

W2

W3

W1

2017-11-27 IJCNLP 2017 Tutorial 30

Training	RNNs	is	hard

• Ideally	inputs	from	many	time	steps	ago	can	modify	output	y
• For	example,	with	2	time	steps

ht ht+1ht-1

yt-1 yt yt+1

xt-1 xt xt+1

W1 W1

W2 W2

W3 W3

2017-11-27 IJCNLP 2017 Tutorial 31

BackPropagation Through	Time	(BPTT)
• Total	error	is	the	sum	of	each	error	at	time	step	t

– !"
!# = ∑ !"&

!#
'()*

• !"&
!#+ =

!"&
!,&

!,&
!#+ is	easy	to	be	calculated

• But	to	calculate		 !"&!#. =
!"&
!,&

!,&
!/&

!/&
!#. is	hard	(also	for	01)

• Because	ℎ(= tanh(0*ℎ(8* +01:() depends	on	ℎ(8*,	
which	depends	on	0* and	ℎ(81,	and	so	on.	

• So	 !"&!#. = ∑ !"&
!,&

!,&
!/&

!/&
!/<

!/<
!#.

(
=)*

ht

>?(

xt

W1

W2

W3

2017-11-27 IJCNLP 2017 Tutorial 32

The vanishing	gradient	problem
• !"#

!$
= ∑ !"#

!'#

!'#
!(#

!(#
!()

!()
!$

*
+,- ,	ℎ* = tanh(4-ℎ*5- +4

78*)

• !(#
!()

= ∏
!(;
!(;<=

*
>,+?- = ∏ 4-diag[tanh′(⋯)]*

>,+?-

• !(;
!(;<=

≤ H 4- ≤ HI-
– where H is bound diag[tanh′(⋯)] , I-is the largest singular value of4-

• !(#
!()

≤ HI-
*5+à0

– if	HI- < 1, this	can	become	very	small (vanishing	gradient)
– if	HI- > 1, this	can	become	very	large	(exploding	gradient)

• Trick	for	exploding	gradient:	clipping	trick	(set	a	threshold)

2017-11-27 IJCNLP 2017 Tutorial 33

A	“solution”

• Intuition
– Ensure	!"# ≥ 1à to	prevent	vanishing	gradients

• So	…	
– Proper	initialization	of	the	W	
– To	use	ReLU instead	of	tanh or	sigmoid	activation	
functions

2017-11-27 IJCNLP 2017 Tutorial 34

A	better	“solution”

• Recall	the	original	transition	equation
– ℎ" = tanh()*ℎ"+* +)-.")

• We	can	instead	update	the	state	additively
– 0" = tanh()*ℎ"+* +)-.")
– ℎ" = ℎ"+* + 0"
– then,	 123

12345
= 1 + 173

12345
≥ 1

– On	the	other	hand
• ℎ" = ℎ"+* + 0" = ℎ"+- + 0"+* + 0" = ⋯

ht …ht-1

:;"

xt

…

…

2017-11-27 IJCNLP 2017 Tutorial 35

A	better	“solution” (cont.)

• Interpolate	between	old	state	and	new	state	(“choosing	to	
forget”)
– !" = $ %&'" +)&ℎ"+,
– ℎ" = !" ⊙ ℎ"+, + (1 − !") ⊙ 2"

• Introduce	a	separate	input	gate	3"
– 3" = $ %4'" +)4ℎ"+,
– ℎ" = !" ⊙ ℎ"+, + 3" ⊙ 2"

• Selectively	expose	memory	cell	5" with	an	output	gate	6"
– 6" = $ %7'" +)7ℎ"+,
– 5" = !" ⊙ 5"+, + 3" ⊙ 2"
– ℎ" = 6" ⊙ tanh	(5")2017-11-27 IJCNLP 2017 Tutorial 36

Long	Short-Term	Memory	(LSTM)

• Hochreiter & Schmidhuber,	1997
• LSTM	=	additive	updates	+	gating

Xt

+ + + +
0 1 2 3

ht-1

Ct-1 Ct

ht

�

�

+

�σ σ σtanh

tanh

ht

2017-11-27 IJCNLP 2017 Tutorial 37

Gated	Recurrent	Unites,	GRU	(Cho	et	al.	2014)

• Main	ideas
– Keep	around	memories	to	capture	long	distance	dependencies
– Allow	error	messages	to	flow	at	different	strengths	depending	on	
the	inputs

• Update	gate
– Based	on	current	input	and	hidden	state
– !" = $ %&'" +)&ℎ"+,

• Reset	gate
– Similarly	but	with	different	weights
– -" = $(%/'" +)/ℎ"+,)

2017-11-27 IJCNLP 2017 Tutorial 38

GRU
• Memory	at	time	step	combines	current	and	previous	time	steps

– ℎ" = $" ⊙ ℎ"&' + (1 − $") ⊙ ℎ-
– Update	gate	z controls	how	much	of	past	state	should	matter	now

• If	z closed	to	1,	then	we	can	copy	information	in	that	unit	through	many	time	
steps	à less	vanishing	gradient!	

• New	memory	content
– ℎ-" = tanh(23" + 4" ⊙ 5ℎ"&')
– If	reset	gate	r unit	is	close	to	0,	then	this	ignores	previous	memory	and	
only	stores	the	new	input	information	à allows	model	to	drop	
information	that	is	irrelevant	in	the	future	

2017-11-27 IJCNLP 2017 Tutorial 39

LSTM	vs.	GRU

• No	clear	winner!
• Tuning	hyperparameters like	layer	size	is	probably	more	
important	than	picking	the	ideal	architecture

• GRUs	have fewer parameters	and	thus	may	train	a	bit	
faster	or	need	less data	to	generalize

• If	you	have	enough	data,	the	greater	expressive	power	
of	LSTMs	may lead	to	better	results.

2017-11-27 IJCNLP 2017 Tutorial 40

More	RNNs

• Bidirectional	RNN • Stack Bidirectional	RNN

2017-11-27 IJCNLP 2017 Tutorial 41

Tree-LSTMs

• Traditional	Sequential	Composition

• Tree-Structured	Composition

2017-11-27 IJCNLP 2017 Tutorial 42

More	Applications	of	RNN

• Neural	Machine	Translation
• Handwriting	Generation
• Image	Caption	Generation
• …...	

2017-11-27 IJCNLP 2017 Tutorial 43

Convolution	Neural	Network

CS231n	Convolutional	Neural	Network	for	Visual	Recognition.

Pooling

2017-11-27 IJCNLP 2017 Tutorial 44

CNN for NLP

Zhang,	Y.,	&	Wallace,	B.	(2015).	A	Sensitivity	Analysis	of	
(and	Practitioners’	Guide	to)	Convolutional	Neural	
Networks	for	Sentence	Classification.

2017-11-27 IJCNLP 2017 Tutorial 45

Recursive	Neural	Network

Socher,	R.,	Manning,	C.,	&	Ng,	A.	(2011).	Learning	Continuous	Phrase	Representations	and	Syntactic	Parsing	with	Recursive	
Neural	Network.	NIPS.

2017-11-27 IJCNLP 2017 Tutorial 46

Summary

• Deep Learning
– Representation Learning
– End-to-end Learning

• Popular Networks
– Feedforward Neural Networks
– Recurrent Neural Networks
– Convolutional Neural Networks

2017-11-27 IJCNLP 2017 Tutorial 47

