
Part 5: Neural	 Transition-‐based	 Methods

IJCNLP 2017 Tutorial 12017-11-27

Part 5.1: Greedy	 Parsing

IJCNLP 2017 Tutorial 22017-11-27

Dependency	 Parsing

•Neural	 MaltParser

IJCNLP 2017 Tutorial 32017-11-27Chen, D., & Manning, C. D. (2014). A Fast and Accurate Dependency Parser using Neural Network. ACL.

Dependency	 Parsing

•ZPar features

IJCNLP 2017 Tutorial 42017-11-27
Yue	 Zhang	 and	 Joakim Nivre. Transition-‐Based	 Dependency	 Parsing	 with	 Rich	 Non-‐Local	 Features.	 In	
proceedings	 of	 ACL	 2011,	 short	 papers.	 Portland,	 USA.	 June.

Dependency	 Parsing

IJCNLP 2017 Tutorial 52017-11-27Chen, D., & Manning, C. D. (2014). A Fast and Accurate Dependency Parser using Neural Network. ACL.

Dependency	 Parsing

• Results

IJCNLP 2017 Tutorial 62017-11-27

PTB (SD) CTB (SD)

Chen, D., & Manning, C. D. (2014). A Fast and Accurate Dependency Parser using Neural Network. ACL.

Dependency	 Parsing

• Chen	 and	 Manning	 with	 richer	 features

2017-11-27 IJCNLP 2017 Tutorial 7
Keperwasser,	 E.,	 &	 Goldberg,	 Y.	 (2016).	 Simple	 and	 Accurate	 Dependency	 Parsing	 Using	 Bidirectional	 LSTM	 Feature	 Representations.	
TACL.

Dependency	 Parsing

• Results

2017-11-27 IJCNLP 2017 Tutorial 8
Keperwasser, E., & Goldberg, Y. (2016). Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature
Representations. TACL.

• Chen and	 Manning	 with	 less	 features

Dependency	 Parsing

2017-11-27 IJCNLP 2017 Tutorial 9
Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL.

Dependency	 Parsing

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL. IJCNLP 2017 Tutorial 102017-11-27

Dependency	 Parsing

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL. IJCNLP 2017 Tutorial 112017-11-27

Dependency	 Parsing

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL. IJCNLP 2017 Tutorial 122017-11-27

Dependency	 Parsing
• Results

CTB (CTB5)PTB (SD)

IJCNLP 2017 Tutorial 132017-11-27
Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack
Long Short-Term Memory. ACL.

Dependency	 Parsing
•Dyer	 et	 al.	 with	 character	 based	 word	 vector

Ballesteros, M., Dyer, C., & Smith, N. A. (2015). Improved Transition-Based Parsing by Modeling Characters instead of
Words with LSTMs. EMNLP. IJCNLP 2017 Tutorial 142017-11-27

Dependency Parsing

• Results

Ballesteros, M., Dyer, C., & Smith, N. A. (2015). Improved Transition-Based Parsing by Modeling Characters instead of
Words with LSTMs. EMNLP. IJCNLP 2017 Tutorial 152017-11-27

Named	 Entity	 Recognition

• Model

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, Chris Dyer, Neural Architectures for
Named Entity Recognition, In Proceedings of NAACL 2016IJCNLP 2017 Tutorial 162017-11-27

where A is a matrix of transition scores such that
A

i,j

represents the score of a transition from the
tag i to tag j. y0 and y

n

are the start and end
tags of a sentence, that we add to the set of possi-
ble tags. A is therefore a square matrix of size k+2.

A softmax over all possible tag sequences yields a
probability for the sequence y:

p(y|X) =

es(X,y)

P
ey2YX

es(X,

ey) .

During training, we maximize the log-probability of
the correct tag sequence:

log(p(y|X)) = s(X,y)� log

0

@
X

ey2YX

es(X,

ey)

1

A

= s(X,y)� logadd

ey2YX

s(X, ey), (1)

where YX represents all possible tag sequences
(even those that do not verify the IOB format) for
a sentence X. From the formulation above, it is ev-
ident that we encourage our network to produce a
valid sequence of output labels. While decoding, we
predict the output sequence that obtains the maxi-
mum score given by:

y

⇤
= argmax

ey2YX

s(X, ey). (2)

Since we are only modeling bigram interactions
between outputs, both the summation in Eq. 1 and
the maximum a posteriori sequence y

⇤ in Eq. 2 can
be computed using dynamic programming.

2.3 Parameterization and Training
The scores associated with each tagging decision
for each token (i.e., the P

i,y

’s) are defined to be
the dot product between the embedding of a word-
in-context computed with a bidirectional LSTM—
exactly the same as the POS tagging model of Ling
et al. (2015b) and these are combined with bigram
compatibility scores (i.e., the A

y,y

0’s). This archi-
tecture is shown in figure 1. Circles represent ob-
served variables, diamonds are deterministic func-
tions of their parents, and double circles are random
variables.

Figure 1: Main architecture of the network. Word embeddings
are given to a bidirectional LSTM. li represents the word i and
its left context, ri represents the word i and its right context.
Concatenating these two vectors yields a representation of the
word i in its context, ci.

The parameters of this model are thus the matrix
of bigram compatibility scores A, and the parame-
ters that give rise to the matrix P, namely the param-
eters of the bidirectional LSTM, the linear feature
weights, and the word embeddings. As in part 2.2,
let x

i

denote the sequence of word embeddings for
every word in a sentence, and y

i

be their associated
tags. We return to a discussion of how the embed-
dings x

i

are modeled in Section 4. The sequence of
word embeddings is given as input to a bidirectional
LSTM, which returns a representation of the left and
right context for each word as explained in 2.1.

These representations are concatenated (c
i

) and
linearly projected onto a layer whose size is equal
to the number of distinct tags. Instead of using the
softmax output from this layer, we use a CRF as pre-
viously described to take into account neighboring
tags, yielding the final predictions for every word
y
i

. Additionally, we observed that adding a hidden
layer between c

i

and the CRF layer marginally im-
proved our results. All results reported with this
model incorporate this extra-layer. The parameters
are trained to maximize Eq. 1 of observed sequences
of NER tags in an annotated corpus, given the ob-
served words.

Named	 Entity	 Recognition

• Model
• Transitions

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, Chris Dyer, Neural Architectures for
Named Entity Recognition, In Proceedings of NAACL 2016IJCNLP 2017 Tutorial 172017-11-27

Outt Stackt Buffert Action Outt+1 Stackt+1 Buffert+1 Segments
O S (u, u), B SHIFT O (u, u), S B —
O (u, u), . . . , (v, v), S B REDUCE(y) g(u, . . . ,v, ry), O S B (u . . . v, y)
O S (u, u), B OUT g(u, r?), O S B —

Figure 2: Transitions of the Stack-LSTM model indicating the action applied and the resulting state. Bold symbols indicate
(learned) embeddings of words and relations, script symbols indicate the corresponding words and relations.

Transition Output Stack Buffer Segment
[] [] [Mark, Watney, visited, Mars]

SHIFT [] [Mark] [Watney, visited, Mars]
SHIFT [] [Mark, Watney] [visited, Mars]
REDUCE(PER) [(Mark Watney)-PER] [] [visited, Mars] (Mark Watney)-PER
OUT [(Mark Watney)-PER, visited] [] [Mars]
SHIFT [(Mark Watney)-PER, visited] [Mars] []
REDUCE(LOC) [(Mark Watney)-PER, visited, (Mars)-LOC] [] [] (Mars)-LOC

Figure 3: Transition sequence for Mark Watney visited Mars with the Stack-LSTM model.

model makes it agnostic to the tagging scheme used
since it directly predicts labeled chunks.

3.2 Representing Labeled Chunks
When the REDUCE(y) operation is executed, the al-
gorithm shifts a sequence of tokens (together with
their vector embeddings) from the stack to the out-
put buffer as a single completed chunk. To compute
an embedding of this sequence, we run a bidirec-
tional LSTM over the embeddings of its constituent
tokens together with a token representing the type of
the chunk being identified (i.e., y). This function is
given as g(u, . . . ,v, r

y

), where r

y

is a learned em-
bedding of a label type. Thus, the output buffer con-
tains a single vector representation for each labeled
chunk that is generated, regardless of its length.

4 Input Word Embeddings

The input layers to both of our models are vector
representations of individual words. Learning inde-
pendent representations for word types from the lim-
ited NER training data is a difficult problem: there
are simply too many parameters to reliably estimate.
Since many languages have orthographic or mor-
phological evidence that something is a name (or
not a name), we want representations that are sen-
sitive to the spelling of words. We therefore use a
model that constructs representations of words from
representations of the characters they are composed
of (4.1). Our second intuition is that names, which
may individually be quite varied, appear in regular
contexts in large corpora. Therefore we use embed-

Figure 4: The character embeddings of the word “Mars” are
given to a bidirectional LSTMs. We concatenate their last out-
puts to an embedding from a lookup table to obtain a represen-
tation for this word.

dings learned from a large corpus that are sensitive
to word order (4.2). Finally, to prevent the models
from depending on one representation or the other
too strongly, we use dropout training and find this is
crucial for good generalization performance (4.3).

4.1 Character-based models of words

An important distinction of our work from most
previous approaches is that we learn character-level

Named	 Entity	 Recognition

• Results
• English	 NER	 results	

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, Chris Dyer, Neural Architectures for
Named Entity Recognition, In Proceedings of NAACL 2016IJCNLP 2017 Tutorial 182017-11-27

Model F1

Collobert et al. (2011)* 89.59
Lin and Wu (2009) 83.78
Lin and Wu (2009)* 90.90
Huang et al. (2015)* 90.10
Passos et al. (2014) 90.05
Passos et al. (2014)* 90.90
Luo et al. (2015)* + gaz 89.9
Luo et al. (2015)* + gaz + linking 91.2
Chiu and Nichols (2015) 90.69
Chiu and Nichols (2015)* 90.77
LSTM-CRF (no char) 90.20
LSTM-CRF 90.94
S-LSTM (no char) 87.96
S-LSTM 90.33

Table 1: English NER results (CoNLL-2003 test set). * indi-
cates models trained with the use of external labeled data

Model F1

Florian et al. (2003)* 72.41
Ando and Zhang (2005a) 75.27
Qi et al. (2009) 75.72
Gillick et al. (2015) 72.08
Gillick et al. (2015)* 76.22
LSTM-CRF – no char 75.06
LSTM-CRF 78.76
S-LSTM – no char 65.87
S-LSTM 75.66

Table 2: German NER results (CoNLL-2003 test set). * indi-
cates models trained with the use of external labeled data

Model F1

Carreras et al. (2002) 77.05
Nothman et al. (2013) 78.6
Gillick et al. (2015) 78.08
Gillick et al. (2015)* 82.84
LSTM-CRF – no char 73.14
LSTM-CRF 81.74
S-LSTM – no char 69.90
S-LSTM 79.88

Table 3: Dutch NER (CoNLL-2002 test set). * indicates mod-
els trained with the use of external labeled data

Model F1

Carreras et al. (2002)* 81.39
Santos and Guimarães (2015) 82.21
Gillick et al. (2015) 81.83
Gillick et al. (2015)* 82.95
LSTM-CRF – no char 83.44
LSTM-CRF 85.75
S-LSTM – no char 79.46
S-LSTM 83.93

Table 4: Spanish NER (CoNLL-2002 test set). * indicates mod-
els trained with the use of external labeled data

word embeddings and dropout had on our LSTM-
CRF model. We observed that pretraining our word
embeddings gave us the biggest improvement in
overall performance of +7.31 in F1. The CRF layer
gave us an increase of +1.79, while using dropout
resulted in a difference of +1.17 and finally learn-

ing character-level word embeddings resulted in an
increase of about +0.74. For the Stack-LSTM we
performed a similar set of experiments. Results with
different architectures are given in table 5.

Model Variant F1

LSTM char + dropout + pretrain 89.15
LSTM-CRF char + dropout 83.63
LSTM-CRF pretrain 88.39
LSTM-CRF pretrain + char 89.77
LSTM-CRF pretrain + dropout 90.20
LSTM-CRF pretrain + dropout + char 90.94
S-LSTM char + dropout 80.88
S-LSTM pretrain 86.67
S-LSTM pretrain + char 89.32
S-LSTM pretrain + dropout 87.96
S-LSTM pretrain + dropout + char 90.33

Table 5: English NER results with our models, using differ-
ent configurations. “pretrain” refers to models that include pre-
trained word embeddings, “char” refers to models that include
character-based modeling of words, “dropout” refers to models
that include dropout rate.

6 Related Work

In the CoNLL-2002 shared task, Carreras et al.
(2002) obtained among the best results on both
Dutch and Spanish by combining several small
fixed-depth decision trees. Next year, in the CoNLL-
2003 Shared Task, Florian et al. (2003) obtained the
best score on German by combining the output of
four diverse classifiers. Qi et al. (2009) later im-
proved on this with a neural network by doing unsu-
pervised learning on a massive unlabeled corpus.

Several other neural architectures have previously
been proposed for NER. For instance, Collobert et
al. (2011) uses a CNN over a sequence of word em-
beddings with a CRF layer on top. This can be
thought of as our first model without character-level
embeddings and with the bidirectional LSTM be-
ing replaced by a CNN. More recently, Huang et al.
(2015) presented a model similar to our LSTM-CRF,
but using hand-crafted spelling features. Zhou and
Xu (2015) also used a similar model and adapted
it to the semantic role labeling task. Lin and Wu
(2009) used a linear chain CRF with L2 regular-
ization, they added phrase cluster features extracted
from the web data and spelling features. Passos et
al. (2014) also used a linear chain CRF with spelling
features and gazetteers.

Language independent NER models like ours
have also been proposed in the past. Cucerzan

Dependency and	 Constituent	
Parsing

• Decoder

IJCNLP 2017 Tutorial 192017-11-27Jiangming Liu, Yue Zhang, Encoder-Decoder Shift-Reduce Syntactic Parsing. IWPT 2017: 105-114

h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

stack queue softamx

a2

a1x2 x5x1 x3 x4 x6
ach=3

h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

softamx

a2

a1x2 x5x1 x3 x4 x6

(a) (b)

Figure 4: Encoder-decoder structure for parsing. (a) vanilla decoder; (b) Stack-queue decoder, where
the stack and the queue are differentiated by ach, which is initialized to the beginning of the sentence
(ach = 0), meaning the stack is empty and queue contains the whole sentence.

s

j

is used to predict current action a

j

:

p(a
j

|s
j

) = softmax(W
out

⇤ s
j

+ b

out

)).

Here W

att

, b
att

, W
out

, b
out

are model parameters,
g is nonlinear function, we use the ReLu for g. For
the encoder, the initial hidden state are randomly
initialized model parameters; For the decoder, the
initial LSTM state s0 is the last the encoder hidden
state [h

ln ;hr1].
This vanilla encoder decoder structure is identi-

cal to the method of Vinyals et al. (2015). The only
difference is that we use shift-reduce action as the
output, while Vinyals et al. (2015) use bracketed
string of constituent trees as the output.

4.3 Stack-Queue decoder

We extend the vanilla decoder, using two separate
attention models over encoder hidden state to rep-
resent the stack and queue, respectively, as shown
in Figure 4(b). In particular, for a given state,
the encoder is divided into two segments, with the
left segment (i.e. stack segment) containing words
form x1 to the word on top of the stack x

t

, and
the right segment (i.e. queue segment) containing
words from the front of the queue x

t+1 to x

n

Attention is applied to the stack and the queue
segments, respectively. In particular, the represen-
tation of the stack segment is:

h

lattj
= attention(1, t) =

tX

i=1

↵

i

h

i

,

and the representation of the queue segment is:

h

rattj
= attention(t+ 1, n) =

nX

i=t+1

↵

i

h

i

.

Similar with the vanilla decoder, the hidden unit
is:

s

j

= g(W
dec

[s
j�1; eaj�1 ;hlattj ;hrattj] + b

dec

).

Where g is the same nonlinear function as in
vanilla decoder.

4.4 Training

Our models are trained to minimize a cross-
entropy loss objective with an l2 regularization
term, defined by

L(✓) = �
X

i

X

j

log p

aij +
�

2
||✓||2,

where ✓ is the set of parameters, p
aij is the proba-

bility of the jth action in the ith training example
given by the model and � is a regularization hyper-
parameter. � = 10�6. We use stochastic gradient
descent with Adam to adjust the learning rate.

5 Experiments

5.1 Data

We use the standard benchmark of WSJ sections
in PTB (Marcus et al., 1993), where the sec-
tions 2-21 are taken for training data, section 22
for development data and section 23 for test for
both dependency parsing and constituent parsing.
For dependency parsing, the constituent trees in
PTB are converted to Stanford dependencies (ver-
sion 3.3.0) using the Stanford parser2. We adopt
the pretrained word embeddings generated on the
AFP portion of English Gigaword (Dyer et al.,
2015).

2https://nlp.stanford.edu/software/lex-parser.shtml

h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

stack queue softamx

a2

a1x2 x5x1 x3 x4 x6
ach=3

h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

softamx

a2

a1x2 x5x1 x3 x4 x6

(a) (b)

Figure 4: Encoder-decoder structure for parsing. (a) vanilla decoder; (b) Stack-queue decoder, where
the stack and the queue are differentiated by ach, which is initialized to the beginning of the sentence
(ach = 0), meaning the stack is empty and queue contains the whole sentence.

s

j

is used to predict current action a

j

:

p(a
j

|s
j

) = softmax(W
out

⇤ s
j

+ b

out

)).

Here W

att

, b
att

, W
out

, b
out

are model parameters,
g is nonlinear function, we use the ReLu for g. For
the encoder, the initial hidden state are randomly
initialized model parameters; For the decoder, the
initial LSTM state s0 is the last the encoder hidden
state [h

ln ;hr1].
This vanilla encoder decoder structure is identi-

cal to the method of Vinyals et al. (2015). The only
difference is that we use shift-reduce action as the
output, while Vinyals et al. (2015) use bracketed
string of constituent trees as the output.

4.3 Stack-Queue decoder

We extend the vanilla decoder, using two separate
attention models over encoder hidden state to rep-
resent the stack and queue, respectively, as shown
in Figure 4(b). In particular, for a given state,
the encoder is divided into two segments, with the
left segment (i.e. stack segment) containing words
form x1 to the word on top of the stack x

t

, and
the right segment (i.e. queue segment) containing
words from the front of the queue x

t+1 to x

n

Attention is applied to the stack and the queue
segments, respectively. In particular, the represen-
tation of the stack segment is:

h

lattj
= attention(1, t) =

tX

i=1

↵

i

h

i

,

and the representation of the queue segment is:

h

rattj
= attention(t+ 1, n) =

nX

i=t+1

↵

i

h

i

.

Similar with the vanilla decoder, the hidden unit
is:

s

j

= g(W
dec

[s
j�1; eaj�1 ;hlattj ;hrattj] + b

dec

).

Where g is the same nonlinear function as in
vanilla decoder.

4.4 Training

Our models are trained to minimize a cross-
entropy loss objective with an l2 regularization
term, defined by

L(✓) = �
X

i

X

j

log p

aij +
�

2
||✓||2,

where ✓ is the set of parameters, p
aij is the proba-

bility of the jth action in the ith training example
given by the model and � is a regularization hyper-
parameter. � = 10�6. We use stochastic gradient
descent with Adam to adjust the learning rate.

5 Experiments

5.1 Data

We use the standard benchmark of WSJ sections
in PTB (Marcus et al., 1993), where the sec-
tions 2-21 are taken for training data, section 22
for development data and section 23 for test for
both dependency parsing and constituent parsing.
For dependency parsing, the constituent trees in
PTB are converted to Stanford dependencies (ver-
sion 3.3.0) using the Stanford parser2. We adopt
the pretrained word embeddings generated on the
AFP portion of English Gigaword (Dyer et al.,
2015).

2https://nlp.stanford.edu/software/lex-parser.shtml

1. Vanilla Decoder 2. Stack-queue Decoder

Dependency and	 Constituent	
Parsing

• Results

2017-11-27Jiangming Liu, Yue Zhang, Encoder-Decoder Shift-Reduce Syntactic Parsing. IWPT 2017: 105-114

Parameter Value
Encoder LSTM Layer 2
Decoder LSTM Layer 1
Word embedding dim 64
Fixed word embedding dim 100
POS tag embedding dim 6
Label embedding dim 20
Action embedding dim 40
encoder LSTM input dim 100
encoder LSTM hidden dim 200
decoder LSTM hidden dim 400
Attention hidden dim 50

Table 1: Hyper-parameters.

5.2 Hyper-parameters

The hyper-parameter values are chosen according
to the performance of the model on the develop-
ment data for dependency parsing, and final val-
ues are shown in Table 1. For constituent parsing,
we use the same hyper-parameters without further
optimization.

5.3 Development experiments

Table 2 shows the development results on depen-
dency parsing. To verify the effectiveness of at-
tention, we build a baseline using average pooling
instead (SQ decoder + average pooling). We ad-
ditionally build a baseline (SQ decoder + treeL-
STM) that is aware of stack structures, by using a
tree-LSTM (Tai et al., 2015) to derive head node
representations when dependency arcs are built.
Attention on the stack sector are applied only on
words on the stack, but not for their dependents.
This representation is analogous to the stack rep-
resentation of Dyer et al. (2015) and Watanabe and
Sumita (2015).

Results show that the explicit construction of
stack does not bring significant improvements
over our stack-agnostic attention model, which
confirms our observation in Section 3 that the ac-
tion history information is sufficient for inferring
the stack structure. Our model achieved this goal
to some extent. The SQ decoder with average
pooling achieves a 3.4% UAS improvement, com-
pared to the vanilla decoder (Section 4.2). The
SQ decoder with attention achieves a further 0.5%
UAS improvement, reaching comparable results to
the stack-LSTM parser.

5.4 Comparison to stack-LSTM

We take a range of different perspectives to analy-
sis the errors distribution of our parser, compar-

Model UAS (%)
Dyer et al. (2015) 92.3
Vanilla decoder 88.5
SQ decoder + average pooling 91.9
SQ decoder + attention 92.4
SQ decoder + treeLSTM 92.4

Table 2: The development results for dependency
parsing.

10 20 30 40 50 60

88

90

92

94

Sentence length

D
ep

en
de

nc
y

ac
cu

ra
cy

(%
)

stack-LSTM
SQ decoder

Figure 5: Accuracy against sentence length. (the
number of words in a sentence, in bins of size 10,
where 20 contains sentences with length [10, 20).)

ing them with stack-LSTM parser (Dyer et al.,
2015). The parsers show different empirical per-
formances over these measures.

Figure 5 shows the accuracy of the parsers rel-
ative to the sentence length. The parsers perform
comparatively better in short sentences. The stack-
LSTM parser performs better on relatively short
sentences (30), while our parser performs bet-
ter on longer sentences. The composition function
is applied in the stack-LSTM parser to explicitly
represent the partially-constructed trees, ensuring
high precision of short sentences. On the other
hand, errors are also fully represented and accu-
mulated in long sentences. As the sentence grows
longer, it is difficult to capture the stack structure.
With stack-queue sensitive attention, SQ decoder
implicitly represent the structures. The decoder is
used to model sequences of actions globally, and
is less influenced by error propagation.

Figures 6 and 7 show comparison on various
POS and dependency lengths, respectively. While
the error distributions of the two parsers on these
fine-grained metrics are slightly different, with our
model being stronger on arcs that take relatively
more steps to build, the main trends of the two
models are consistent, which shows that our model
can learn similar sources of information compared
to the parser of Dyer et al. (2015), without explic-

Dependency Parser

Vaswani, A., & Sagae, K. (2016). Efficient Structured Inference for Transition-Based Parsing with Neural Networks and
Error States. NAACL.

Dependency Parser

Vaswani, A., & Sagae, K. (2016). Efficient Structured Inference for Transition-Based Parsing with Neural Networks and
Error States. NAACL.

Dependency Parser

Vaswani, A., & Sagae, K. (2016). Efficient Structured Inference for Transition-Based Parsing with Neural Networks and
Error States. NAACL.

Part 5.2: Dependency	 Parsing	 with	
Beam Search

IJCNLP 2017 Tutorial 242017-11-27

Dependency	 Parsing

•Zhang	 &	 Nivre (2011)

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 25

Dependency	 Parsing

•Chen	 and	 Manning	 (2014)

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 26

Dependency	 Parsing

•What	 does	 not	 work

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 27

Dependency	 Parsing

•Sentence-‐level	 log	 likelihood

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 28

Dependency	 Parsing

•Contrastive	 Estimation

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 29

Dependency	 Parsing

•Contrastive	 Estimation

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 30

Dependency	 Parsing

•Results

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 31

Dependency	 Parsing

•Results

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 32

Dependency	 Parsing

•Results

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based
Dependency Parsing. ACL.2017-11-27 IJCNLP 2017 Tutorial 33

Google’s SyntaxNet

•Andor et	 al.	 follows	 this	 method

•Offers	 theorem

•More	 tasks

•Better	 results

2017-11-27 IJCNLP 2017 Tutorial 34
Andor, D., Alberti, Chris., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., & Collins, M. (2016). Globally
Normalized Transition-Based Neural Networks. ACL.

Google’s SyntaxNet

Andor, D., Alberti, Chris., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., & Collins, M. (2016). Globally
Normalized Transition-Based Neural Networks. ACL.2017-11-27 IJCNLP 2017 Tutorial 35

•English Results

Google’s SyntaxNet

Andor, D., Alberti, Chris., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., & Collins, M. (2016). Globally
Normalized Transition-Based Neural Networks. ACL.2017-11-27 IJCNLP 2017 Tutorial 36

•Results for other languages

37

Changes of Performance

86.0
87.0
88.0
89.0
90.0
91.0
92.0
93.0
94.0
95.0
96.0

Zhang	 &	
McDonald	
(2014)

Chen	 &	 Manning	
(2014)

Dyer	 et	 al.	
(2015)

Zhou	 et	 al.	
(2015)

Andor	 et	 al.	
(2016)

Dozat	 &	
Manning	 (2017)

Test on PTB with Stanford Dependency

UAS LAS

2017-11-27 IJCNLP 2017 Tutorial

Part 5.3: Other tasks with beam-‐search

IJCNLP 2017 Tutorial 382017-11-27

Word	 segmentation

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Word	 segmentation

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Word	 segmentation

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Word	 segmentation

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Main results on CTB60 test dataset

Word	 segmentation

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Main results on PKU and MSR test dataset

Word	 segmentation

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Word	 segmentation

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-Based Neural Word Segmentation. ACL.

Word	 segmentation

•Other Methods
•Cai and	 Zhao	 (2016)
•Yang et al. (2017)

Cai, D., & Zhao, H. (2016). Neural Word Segmentation Learning for Chinese. ACL.
Jie Yang,	 Yue	 Zhang,	 Fei Dong. Neural	 Word	 Segmentation	 with	 Rich	 Pretraining (ACL).	 Vancouver,	 Canada,	 July.

Constituent	 parsing

•Model

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

Constituent	 parsing

•Update	 at	 max-‐violation

•Using	 expected	 loss	 from	 all	 violations

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

Constituent	 parsing

•English Results

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

Constituent	 parsing

•Chinese Results

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

Constituent	 parsing (Bottom-‐up)
• Binarization

S-r

VP-l

NP-r

NP-r

NP-r

S-l

S

VP

NPVBZ

NNS

NP

JJ
DT JJ NN

.

The little boy
tomatoesred

.

likes

DT

The JJ NN

little boy

VBZ

likes
NNSJJ

tomatoesred

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Shift

stack queue
DT JJ NN

The little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Constituent	 parsing (Bottom-‐up)

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Shift

stack
DT

The

Constituent	 parsing (Bottom-‐up)

queue
JJ NN

little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Shift

stack
DT JJ

The little

Constituent	 parsing (Bottom-‐up)

queue
NN

boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Reduce-‐r-‐NP

stack
DT JJ NN

The little boy

Constituent	 parsing (Bottom-‐up)

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Reduce-‐r-‐NP

stack
DT

JJ NN

The

little boy

NP-r

Constituent	 parsing (Bottom-‐up)

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Shift

stack

DT

JJ NN
The

little boy

NP-r

NP-r

Constituent	 parsing (Bottom-‐up)

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Shift

stack

DT

JJ NN
The

little boy

VBZ

likes

NP-r

NP-r

Constituent	 parsing (Bottom-‐up)

queue
NNSJJ

tomatoesred

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Shift

stack

DT

JJ NN
The

little boy

VBZ

likes

JJ

red

NP-r

NP-r

Constituent	 parsing (Bottom-‐up)

queue
NNS

tomatoes

.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Reduce-‐r-‐NP

stack

DT

JJ NN
The

little boy

VBZ

likes

NNSJJ

tomatoesred

NP-r

NP-r

Constituent	 parsing (Bottom-‐up)

queue
.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Reduce-‐l-‐VP

stack

DT

JJ NN
The

little boy

VBZ

likes

NNSJJ

tomatoesred

NP-r

NP-r NP-r

Constituent	 parsing (Bottom-‐up)

queue
.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Shift

stack

DT

JJ NN
The

little boy

VBZ

likes
NNSJJ

tomatoesred

NP-r

NP-r

NP-r

VP-l

Constituent	 parsing (Bottom-‐up)

queue
.

.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Reduce-‐l-‐S

stack queue

DT

JJ NN
The

little boy

VBZ

likes
NNSJJ

tomatoesred

.

.

NP-r

NP-r

NP-r

VP-l

Constituent	 parsing (Bottom-‐up)

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Reduce-‐r-‐S

stack queue

VBZ

likes
NNSJJ

tomatoesred

.

.
NP-r

VP-l

S-l

Constituent	 parsing (Bottom-‐up)

DT

JJ NN
The

little boy

NP-r

NP-r

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Actions
– Terminate

stack queue

DT

JJ NN
The

little boy

VBZ

likes
NNSJJ

tomatoesred

.

.

NP-r

NP-r

NP-r

VP-l

S-l

S-r

Constituent	 parsing (Bottom-‐up)

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

• Bottom-‐up guidance
– Rich local features from readily constructed trees
– Lack of the look-‐ahead guidance
– Post-‐order traversal on the tree

Constituent	 parsing (Bottom-‐up)

Watanabe, Taro, and Eiichiro Sumita. "Transition-based Neural Constituent Parsing." ACL (1). 2015.

Constituent	 parsing

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

•Model
•Parser	 Transitions	 (Top-‐down)
•Generator	 Transitions	

Constituent	 parsing

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

•Model
• Parser	 Transitions	 (Top-‐down)

• NT(X)	 introduces	 an	 “open	 nonterminal”	 X	 onto	 the	 top	 of	 the	 stack.	
• SHIFT	
• REDUCE

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1

S x | B n SHIFT S | x B n
S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1

S T n GEN(x) S | x T | x n
S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

(a) Parser Transitions

• Actions
– NT(S)

stack queue
DT JJ NN

The little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Constituent	 parsing (Top-‐down)

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– NT(NP)

stack

Constituent	 parsing (Top-‐down)

S

queue
DT JJ NN

The little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Shift

stack

Constituent	 parsing (Top-‐down)

S

NP

queue
DT JJ NN

The little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Shift

stack

DT

The

Constituent	 parsing (Top-‐down)

S

NP

queue
JJ NN

little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Shift

stack

DT JJ

The little

Constituent	 parsing (Top-‐down)

S

NP

queue
NN

boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Reduce

stack

DT JJ NN

The little boy

Constituent	 parsing (Top-‐down)

S

NP

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– NT(VP)

stack

DT JJ NN

The little boy

Constituent	 parsing (Top-‐down)

S

NP

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Shift

stack

DT JJ NN

The little boy

Constituent	 parsing (Top-‐down)

S

NP VP

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– NT(NP)

stack

DT JJ NN

The little boy

VBZ

likes

Constituent	 parsing (Top-‐down)

S

NP VP

queue
NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Shift

stack

DT JJ NN

The little boy

VBZ

likes

Constituent	 parsing (Top-‐down)

S

NP VP

NP

queue
NNSJJ

tomatoesred

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Shift

stack queue

DT JJ NN

The little boy

VBZ

likes

NNS

JJ

tomatoes

red

.

.

Constituent	 parsing (Top-‐down)

S

NP VP

NP

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Reduce

stack queue

DT JJ NN

The little boy

VBZ

likes NNSJJ

tomatoesred

.

.

Constituent	 parsing (Top-‐down)

S

NP VP

NP

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Reduce

queue
.

.

Constituent	 parsing (Top-‐down)

stack

DT JJ NN

The little boy

VBZ

likes NNSJJ

tomatoesred

S

NP VP

NP

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Shift

queue
.

.

Constituent	 parsing (Top-‐down)

stack

DT JJ NN

The little boy

VBZ

likes NNSJJ

tomatoesred

S

NP VP

NP

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Reduce

queue

Constituent	 parsing (Top-‐down)

stack

DT JJ NN

The little boy

VBZ

likes NNSJJ

tomatoesred

S

NP VP

NP

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Actions
– Terminate

queue

Constituent	 parsing (Top-‐down)

stack

DT JJ NN

The little boy

VBZ

likes NNSJJ

tomatoesred

S

NP VP

NP

.

.

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Top-‐down guidance
– Non-‐local information for local decision
– Strong encoders over the input to predict a constituent hierarchy
before its construction

– Pre-‐order traversal on the tree

Constituent	 parsing (Top-‐down)

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

Constituent	 parsing

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Generative Model

suming the availability of constant time push and
pop operations, the runtime is linear in the number
of the nodes in the parse tree that is generated by
the parser/generator (intuitively, this is true since al-
though an individual REDUCE operation may require
applying a number of pops that is linear in the num-
ber of input symbols, the total number of pop opera-
tions across an entire parse/generation run will also
be linear). Since there is no way to bound the num-
ber of output nodes in a parse tree as a function of
the number of input words, stating the runtime com-
plexity of the parsing algorithm as a function of the
input size requires further assumptions. Assuming
our fixed constraint on maximum depth, it is linear.

3.5 Comparison to Other Models
Our generation algorithm algorithm differs from
previous stack-based parsing/generation algorithms
in two ways. First, it constructs rooted tree struc-
tures top down (rather than bottom up), and sec-
ond, the transition operators are capable of directly
generating arbitrary tree structures rather than, e.g.,
assuming binarized trees, as is the case in much
prior work that has used transition-based algorithms
to produce phrase-structure trees (Sagae and Lavie,
2005; Zhang and Clark, 2011; Zhu et al., 2013).

4 Generative Model

RNNGs use the generator transition set just pre-
sented to define a joint distribution on syntax trees
(y) and words (x). This distribution is defined as a
sequence model over generator transitions that is pa-
rameterized using a continuous space embedding of
the algorithm state at each time step (ut); i.e.,

p(x, y) =

|a(x,y)|Y

t=1

p(at | a<t)

=

|a(x,y)|Y

t=1

exp r

>
atut + batP

a02AG(Tt,St,nt) exp r

>
a0ut + ba0

,

and where action-specific embeddings ra and bias
vector b are parameters in ⇥.

The representation of the algorithm state at time
t, ut, is computed by combining the representation
of the generator’s three data structures: the output
buffer (Tt), represented by an embedding ot, the
stack (St), represented by an embedding st, and the

history of actions (a<t) taken by the generator, rep-
resented by an embedding ht,

ut = tanh (W[ot; st;ht] + c) ,

where W and c are parameters. Refer to Figure 5
for an illustration of the architecture.

The output buffer, stack, and history are se-
quences that grow unboundedly, and to obtain rep-
resentations of them we use recurrent neural net-
works to “encode” their contents (Cho et al., 2014).
Since the output buffer and history of actions are
only appended to and only contain symbols from a
finite alphabet, it is straightforward to apply a stan-
dard RNN encoding architecture. The stack (S) is
more complicated for two reasons. First, the ele-
ments of the stack are more complicated objects than
symbols from a discrete alphabet: open nontermi-
nals, terminals, and full trees, are all present on the
stack. Second, it is manipulated using both push and
pop operations. To efficiently obtain representations
of S under push and pop operations, we use stack
LSTMs (Dyer et al., 2015). To represent complex
parse trees, we define a new syntactic composition
function that recursively defines representations of
trees.

4.1 Syntactic Composition Function

When a REDUCE operation is executed, the parser
pops a sequence of completed subtrees and/or to-
kens (together with their vector embeddings) from
the stack and makes them children of the most recent
open nonterminal on the stack, “completing” the
constituent. To compute an embedding of this new
subtree, we use a composition function based on
bidirectional LSTMs, which is illustrated in Fig. 6.

NP

u v w

NP
u v w

NP

x

x

Figure 6: Syntactic composition function based on bidirec-
tional LSTMs that is executed during a REDUCE operation; the
network on the right models the structure on the left.

Constituent	 parsing

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

•Model
• Generator Transitions

• GEN(x)	 operations	 which	 generate	 terminal	 symbol	 x	 ∈ Σ and	 add	 it	 to	 the
top	 of	 the	 stack	 and	 the	 out-‐put	 buffer	

(b) Generator Transitions

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1

S x | B n SHIFT S | x B n
S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1

S T n GEN(x) S | x T | x n
S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

Constituent	 parsing

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Generative Model
•Distribution over stack	 (𝑺𝒕),	 output	 buffer	 (𝑻𝒕)	 and	 history	 of	
actions	 (a < t)	

The hungry cat

NP (VP(S

RE
DU

CE
GE

N
NT

(N
P)

NT
(VP

)

…

cat hungry The
a<t

p(at)

ut
Tt� �� �St� �� �

Figure 5: Neural architecture for defining a distribution over at given representations of the stack (St), output buffer (Tt) and
history of actions (a<t). Details of the composition architecture of the NP, the action history LSTM, and the other elements of the
stack are not shown. This architecture corresponds to the generator state at line 7 of Figure 4.

The first vector read by the LSTM in both the for-
ward and reverse directions is an embedding of the
label on the constituent being constructed (in the fig-
ure, NP). This is followed by the embeddings of the
child subtrees (or tokens) in forward or reverse or-
der. Intuitively, this order serves to “notify” each
LSTM what sort of head it should be looking for as it
processes the child node embeddings. The final state
of the forward and reverse LSTMs are concatenated,
passed through an affine transformation and a tanh

nonlinearity to become the subtree embedding.5 Be-
cause each of the child node embeddings (u, v, w in
Fig. 6) is computed similarly (if it corresponds to an
internal node), this composition function is a kind of
recursive neural network.

4.2 Word Generation

To reduce the size of AG(S, T, n), word genera-
tion is broken into two parts. First, the decision to
generate is made (by predicting GEN as an action),
and then choosing the word, conditional on the cur-
rent parser state. To further reduce the computa-
tional complexity of modeling the generation of a
word, we use a class-factored softmax (Baltescu and
Blunsom, 2015; Goodman, 2001). By using

p
|⌃|

classes for a vocabulary of size |⌃|, this prediction

5We found the many previously proposed syntactic compo-
sition functions inadequate for our purposes. First, we must
contend with an unbounded number of children, and many
previously proposed functions are limited to binary branching
nodes (Socher et al., 2013b; Dyer et al., 2015). Second, those
that could deal with n-ary nodes made poor use of nonterminal
information (Tai et al., 2015), which is crucial for our task.

step runs in time O(

p
|⌃|) rather than the O(|⌃|) of

the full-vocabulary softmax. To obtain clusters, we
use the greedy agglomerative clustering algorithm
of Brown et al. (1992).

4.3 Training

The parameters in the model are learned to maxi-
mize the likelihood of a corpus of trees.

4.4 Discriminative Parsing Model

A discriminative parsing model can be obtained by
replacing the embedding of Tt at each time step with
an embedding of the input buffer Bt. To train this
model, the conditional likelihood of each sequence
of actions given the input string is maximized.6

5 Inference via Importance Sampling

Our generative model p(x, y) defines a joint dis-
tribution on trees (y) and sequences of words (x).
To evaluate this as a language model, it is neces-
sary to compute the marginal probability p(x) =P

y

02Y(x) p(x, y0
). And, to evaluate the model as

a parser, we need to be able to find the MAP parse
tree, i.e., the tree y 2 Y(x) that maximizes p(x, y).
However, because of the unbounded dependencies
across the sequence of parsing actions in our model,
exactly solving either of these inference problems
is intractable. To obtain estimates of these, we use

6For the discriminative parser, the POS tags are processed
similarly as in (Dyer et al., 2015); they are predicted for English
with the Stanford Tagger (Toutanova et al., 2003) and Chinese
with Marmot (Mueller et al., 2013).

Constituent	 parsing

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• English Results

generative model.10

Table 2: Parsing results on PTB §23 (D=discriminative,
G=generative, S=semisupervised). ? indicates the (Vinyals et
al., 2015) result with trained only on the WSJ corpus without
ensembling.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) – single S 92.1
Discriminative, q(y | x) D 89.8
Generative, p̂(y | x) G 92.4

Chinese parsing results. Chinese parsing results
were obtained with the same methodology as in En-
glish and show the same pattern (Table 6).

Table 3: Parsing results on CTB 5.1.
Model type F1

Zhu et al. (2013) D 82.6
Wang et al. (2015) D 83.2
Huang and Harper (2009) D 84.2
Charniak (2000) G 80.8
Bikel (2004) G 80.6
Petrov and Klein (2007) G 83.3
Zhu et al. (2013) S 85.6
Wang and Xue (2014) S 86.3
Wang et al. (2015) S 86.6
Discriminative, q(y | x) D 80.7
Generative, p̂(y | x) G 82.7

Language model results. We report held-out per-
word perplexities of three language models, both se-
quential and syntactic. Log probabilities are normal-
ized by the number of words (excluding the stop

10The value ↵ = 0.8 was chosen based on the diversity of
the samples generated on the development set.

symbol), inverted, and exponentiated to yield the
perplexity. Results are summarized in Table 4.

Table 4: Language model perplexity results.

Model test ppl (PTB) test ppl (CTB)
IKN 5-gram 169.3 255.2
LSTM LM 113.4 207.3
RNNG 102.4 171.9

7 Discussion

It is clear from our experiments that the proposed
generative model is quite effective both as a parser
and as a language model. This is the result of
(i) relaxing conventional independence assumptions
(e.g., context-freeness) and (ii) inferring continu-
ous representations of symbols alongside non-linear
models of their syntactic relationships. The most
significant question that remains is why the dis-
criminative model—which has more information
available to it than the generative model—performs
worse than the generative model. This pattern has
been observed before in neural parsing by Hender-
son (2004), who hypothesized that larger, unstruc-
tured conditioning contexts are harder to learn from,
and provide opportunities to overfit. Our discrimi-
native model conditions on the entire history, stack,
and buffer, while our generative model only ac-
cesses the history and stack. The fully discrimina-
tive model of Vinyals et al. (2015) was able to obtain
results similar to those of our generative model (al-
beit using much larger training sets obtained through
semisupervision) but similar results to those of our
discriminative parser using the same data. In light of
their results, we believe Henderson’s hypothesis is
correct, and that generative models should be con-
sidered as a more statistically efficient method for
learning neural networks from small data.

8 Related Work

Our language model combines work from two mod-
eling traditions: (i) recurrent neural network lan-
guage models and (ii) syntactic language model-
ing. Recurrent neural network language models
use RNNs to compute representations of an un-
bounded history of words in a left-to-right language
model (Zaremba et al., 2015; Mikolov et al., 2010;

D=discriminative,
G=generative,
S=Semi-supervised

Constituent	 parsing

Chris	 Dyer, Adhiguna Kuncoro, Miguel	 Ballesteros, Noah	 A.	 Smith.	 Recurrent	 neural	 network	 grammars[J].	 In NAACL,	 2016.

• Chinese Results

generative model.10

Table 2: Parsing results on PTB §23 (D=discriminative,
G=generative, S=semisupervised). ? indicates the (Vinyals et
al., 2015) result with trained only on the WSJ corpus without
ensembling.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) – single S 92.1
Discriminative, q(y | x) D 89.8
Generative, p̂(y | x) G 92.4

Chinese parsing results. Chinese parsing results
were obtained with the same methodology as in En-
glish and show the same pattern (Table 6).

Table 3: Parsing results on CTB 5.1.
Model type F1

Zhu et al. (2013) D 82.6
Wang et al. (2015) D 83.2
Huang and Harper (2009) D 84.2
Charniak (2000) G 80.8
Bikel (2004) G 80.6
Petrov and Klein (2007) G 83.3
Zhu et al. (2013) S 85.6
Wang and Xue (2014) S 86.3
Wang et al. (2015) S 86.6
Discriminative, q(y | x) D 80.7
Generative, p̂(y | x) G 82.7

Language model results. We report held-out per-
word perplexities of three language models, both se-
quential and syntactic. Log probabilities are normal-
ized by the number of words (excluding the stop

10The value ↵ = 0.8 was chosen based on the diversity of
the samples generated on the development set.

symbol), inverted, and exponentiated to yield the
perplexity. Results are summarized in Table 4.

Table 4: Language model perplexity results.

Model test ppl (PTB) test ppl (CTB)
IKN 5-gram 169.3 255.2
LSTM LM 113.4 207.3
RNNG 102.4 171.9

7 Discussion

It is clear from our experiments that the proposed
generative model is quite effective both as a parser
and as a language model. This is the result of
(i) relaxing conventional independence assumptions
(e.g., context-freeness) and (ii) inferring continu-
ous representations of symbols alongside non-linear
models of their syntactic relationships. The most
significant question that remains is why the dis-
criminative model—which has more information
available to it than the generative model—performs
worse than the generative model. This pattern has
been observed before in neural parsing by Hender-
son (2004), who hypothesized that larger, unstruc-
tured conditioning contexts are harder to learn from,
and provide opportunities to overfit. Our discrimi-
native model conditions on the entire history, stack,
and buffer, while our generative model only ac-
cesses the history and stack. The fully discrimina-
tive model of Vinyals et al. (2015) was able to obtain
results similar to those of our generative model (al-
beit using much larger training sets obtained through
semisupervision) but similar results to those of our
discriminative parser using the same data. In light of
their results, we believe Henderson’s hypothesis is
correct, and that generative models should be con-
sidered as a more statistically efficient method for
learning neural networks from small data.

8 Related Work

Our language model combines work from two mod-
eling traditions: (i) recurrent neural network lan-
guage models and (ii) syntactic language model-
ing. Recurrent neural network language models
use RNNs to compute representations of an un-
bounded history of words in a left-to-right language
model (Zaremba et al., 2015; Mikolov et al., 2010;

D=discriminative,
G=generative,
S=Semi-supervised

• Trade-‐off

– Compromise between bottom-‐up constituent
information and top-‐down lookahead
information

Constituent	 parsing (In-‐Order)

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

v In-‐order traversal on the non-‐binary tree

– Regard the left-‐most child as the left branch of
the binary tree, and the rest children are traced
from left to right.

Constituent	 parsing (In-‐Order)

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Shift

stack queue
DT JJ NN

The little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Constituent	 parsing (In-‐Order)

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– PJ(NP)

stack
DT

The

Constituent	 parsing (In-‐Order)

queue
JJ NN

little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Shift

stack

DT

The

Constituent	 parsing (In-‐Order)

NP

queue
JJ NN

little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Shift

stack

DT JJ

The little

Constituent	 parsing (In-‐Order)

NP

queue
NN

boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Reduce

stack

DT JJ NN

The little boy

Constituent	 parsing (In-‐Order)

NP

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– PJ(S)

Constituent	 parsing (In-‐Order)

stack

DT JJ NN

The little boy

NP

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Shift

stack

DT JJ NN

The little boy

Constituent	 parsing (In-‐Order)

NP

S

queue
VBZ

likes

NNSJJ

tomatoesred

.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– PJ(VP)

stack queue

DT JJ NN

The little boy

VBZ

likes

NNSJJ

tomatoesred

.

.

Constituent	 parsing (In-‐Order)

NP

S

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Shift

stack

DT JJ NN

The little boy

VBZ

likes

Constituent	 parsing (In-‐Order)

NP

S

VP

queue
NNSJJ

tomatoesred

.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– PJ(NP)

Constituent	 parsing (In-‐Order)

queue
NNS

JJ

tomatoes

red

.

.

stack

DT JJ NN

The little boy

VBZ

likes

NP

S

VP

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Shift

queue
NNS

JJ

tomatoes

red

.

.

Constituent	 parsing (In-‐Order)

NP

stack

DT JJ NN

The little boy

VBZ

likes

NP

S

VP

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Reduce

queue

NNSJJ

tomatoesred

.

.

Constituent	 parsing (In-‐Order)

NP

stack

DT JJ NN

The little boy

VBZ

likes

NP

S

VP

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Reduce

queue
.

.

Constituent	 parsing (In-‐Order)

NNSJJ

tomatoesred

NP

stack

DT JJ NN

The little boy

VBZ

likes

NP

S

VP

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Shift

queue
.

.

Constituent	 parsing (In-‐Order)

NNSJJ

tomatoesred

NP

stack

DT JJ NN

The little boy

VBZ

likes

NP

S

VP

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Reduce

queue

Constituent	 parsing (In-‐Order)

NNSJJ

tomatoesred

NP

stack

DT JJ NN

The little boy

VBZ

likes

NP

S

VP
.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Actions
– Terminate

queue

Constituent	 parsing (In-‐Order)

NNSJJ

tomatoesred

NP

stack

DT JJ NN

The little boy

VBZ

likes

NP

S

VP
.

.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

In-‐Order Constituent	 parsing

•Different Transition Systems

SHIFT
[�, i, false]

[�|w
i

, i+ 1, false]

REDUCE-L/R-X [�|s1|s0, i, false]
[�|X

s1s0 , i, false]

Unary-X [�|s0, i, false]
[�|X

s0 , i, false]

FINISH
[�, i, false]
[�, i, true]

(a) bottom-up system

SHIFT
[�, i, /]

[�|w
i

, i+ 1, /]

NT-X [�, i, /]
(�|X, i, /]

REDUCE
[�|X|s

j

|...|s0, i, /]
[�|X

sj ...s0 , i, /]

(b) top-down system

SHIFT
[�, i, false]

[�|w
i

, i+ 1, false]

PJ-X [�|s0, i, false]
(�|s0|X, i, false]

REDUCE
[�|s

j

|X|s
j�1|...|s0, i, false]

[�|X
sjsj�1...s0 , i, false]

FINISH
[�, i, false]
[�, i, true]

(c) in-order system

Figure 3: Different transition systems. The start
state is [�, 0, false] and the final state is [�, n, true].

new constituent that has the popped subtrees as
its children. This new completed constituent
is pushed onto the stack as a single composite
item.

The deduction system for the process is shown in
Figure 3(b)2. Given the sentence in Figure 1, the
sequence of actions NT-S, NT-NP, SHIFT, SHIFT,
SHIFT, REDUCE, NT-VP, SHIFT, NT-NP, SHIFT,
SHIFT, REDUCE, REDUCE, SHIFT and REDUCE,

2Due to unary decision, we use completed marks to make
finish decision, except for top-down system.

can be used to construct its constituent tree.

3 In-order system

We propose a novel in-order system for transition-
based constituent parsing. Similar to the bottom-up
and top-down systems, the in-order system main-
tains a stack and a buffer for representing a state.
The set of transition actions are defined as:

• SHIFT: pop the front word from the buffer, and
push it onto the stack.

• PJ-X: project a nonterminal with label X on top
of the stack.

• REDUCE: repeatedly pop completed subtrees
or terminal symbols from the stack until an pro-
jected nonterminal is encountered, and then this
projected nonterminal is popped and used as
the label of a new constituent, and furthermore,
one more item on the top of stack is popped as
the leftmost child of the new constituent and the
popped subtrees as its rest children. This new
completed constituent is pushed onto the stack
as a single composite item.

• FINISH: pop the root node off the stack and
ends parsing.

The deduction system for the process is shown in
Figure 3(c). Given the sentence in Figure 1, the
sequence of actions SHIFT, PJ-NP, SHIFT, SHIFT,
REDUCE, PJ-S, SHIFT, PJ-VP, SHIFT, PJ-NP,
SHIFT, REDUCE, REDUCE, SHIFT, REDUCE, FIN-
ISH can be used to construct its constituent tree.

Variants The in-order system can be gener-
alized into variants by modifying k, the number of
leftmost nodes traced before the parent node. For
example, given the tree “(S a b c d)”, the traversal is
“a S b c d” if k = 1 while the traversal is “a b S c
d” if k = 2. We name each variant with a certain k

value as k-in-order systems. In this paper, we only
investigate the in-order system with k = 1, the 1-in-
order system. Note that the top-down parser can be
regarded as a special case of a generalized version
of the in-order parser with k = 0, and the bottom-up
parser can be regarded as a special case with k = 1.

SHIFT
[�, i, false]

[�|w
i

, i+ 1, false]

REDUCE-L/R-X [�|s1|s0, i, false]
[�|X

s1s0 , i, false]

Unary-X [�|s0, i, false]
[�|X

s0 , i, false]

FINISH
[�, i, false]
[�, i, true]

(a) bottom-up system

SHIFT
[�, i, /]

[�|w
i

, i+ 1, /]

NT-X [�, i, /]
(�|X, i, /]

REDUCE
[�|X|s

j

|...|s0, i, /]
[�|X

sj ...s0 , i, /]

(b) top-down system

SHIFT
[�, i, false]

[�|w
i

, i+ 1, false]

PJ-X [�|s0, i, false]
(�|s0|X, i, false]

REDUCE
[�|s

j

|X|s
j�1|...|s0, i, false]

[�|X
sjsj�1...s0 , i, false]

FINISH
[�, i, false]
[�, i, true]

(c) in-order system

Figure 3: Different transition systems. The start
state is [�, 0, false] and the final state is [�, n, true].

new constituent that has the popped subtrees as
its children. This new completed constituent
is pushed onto the stack as a single composite
item.

The deduction system for the process is shown in
Figure 3(b)2. Given the sentence in Figure 1, the
sequence of actions NT-S, NT-NP, SHIFT, SHIFT,
SHIFT, REDUCE, NT-VP, SHIFT, NT-NP, SHIFT,
SHIFT, REDUCE, REDUCE, SHIFT and REDUCE,

2Due to unary decision, we use completed marks to make
finish decision, except for top-down system.

can be used to construct its constituent tree.

3 In-order system

We propose a novel in-order system for transition-
based constituent parsing. Similar to the bottom-up
and top-down systems, the in-order system main-
tains a stack and a buffer for representing a state.
The set of transition actions are defined as:

• SHIFT: pop the front word from the buffer, and
push it onto the stack.

• PJ-X: project a nonterminal with label X on top
of the stack.

• REDUCE: repeatedly pop completed subtrees
or terminal symbols from the stack until an pro-
jected nonterminal is encountered, and then this
projected nonterminal is popped and used as
the label of a new constituent, and furthermore,
one more item on the top of stack is popped as
the leftmost child of the new constituent and the
popped subtrees as its rest children. This new
completed constituent is pushed onto the stack
as a single composite item.

• FINISH: pop the root node off the stack and
ends parsing.

The deduction system for the process is shown in
Figure 3(c). Given the sentence in Figure 1, the
sequence of actions SHIFT, PJ-NP, SHIFT, SHIFT,
REDUCE, PJ-S, SHIFT, PJ-VP, SHIFT, PJ-NP,
SHIFT, REDUCE, REDUCE, SHIFT, REDUCE, FIN-
ISH can be used to construct its constituent tree.

Variants The in-order system can be gener-
alized into variants by modifying k, the number of
leftmost nodes traced before the parent node. For
example, given the tree “(S a b c d)”, the traversal is
“a S b c d” if k = 1 while the traversal is “a b S c
d” if k = 2. We name each variant with a certain k

value as k-in-order systems. In this paper, we only
investigate the in-order system with k = 1, the 1-in-
order system. Note that the top-down parser can be
regarded as a special case of a generalized version
of the in-order parser with k = 0, and the bottom-up
parser can be regarded as a special case with k = 1.

SHIFT
[�, i, false]

[�|w
i

, i+ 1, false]

REDUCE-L/R-X [�|s1|s0, i, false]
[�|X

s1s0 , i, false]

Unary-X [�|s0, i, false]
[�|X

s0 , i, false]

FINISH
[�, i, false]
[�, i, true]

(a) bottom-up system

SHIFT
[�, i, /]

[�|w
i

, i+ 1, /]

NT-X [�, i, /]
(�|X, i, /]

REDUCE
[�|X|s

j

|...|s0, i, /]
[�|X

sj ...s0 , i, /]

(b) top-down system

SHIFT
[�, i, false]

[�|w
i

, i+ 1, false]

PJ-X [�|s0, i, false]
(�|s0|X, i, false]

REDUCE
[�|s

j

|X|s
j�1|...|s0, i, false]

[�|X
sjsj�1...s0 , i, false]

FINISH
[�, i, false]
[�, i, true]

(c) in-order system

Figure 3: Different transition systems. The start
state is [�, 0, false] and the final state is [�, n, true].

new constituent that has the popped subtrees as
its children. This new completed constituent
is pushed onto the stack as a single composite
item.

The deduction system for the process is shown in
Figure 3(b)2. Given the sentence in Figure 1, the
sequence of actions NT-S, NT-NP, SHIFT, SHIFT,
SHIFT, REDUCE, NT-VP, SHIFT, NT-NP, SHIFT,
SHIFT, REDUCE, REDUCE, SHIFT and REDUCE,

2Due to unary decision, we use completed marks to make
finish decision, except for top-down system.

can be used to construct its constituent tree.

3 In-order system

We propose a novel in-order system for transition-
based constituent parsing. Similar to the bottom-up
and top-down systems, the in-order system main-
tains a stack and a buffer for representing a state.
The set of transition actions are defined as:

• SHIFT: pop the front word from the buffer, and
push it onto the stack.

• PJ-X: project a nonterminal with label X on top
of the stack.

• REDUCE: repeatedly pop completed subtrees
or terminal symbols from the stack until an pro-
jected nonterminal is encountered, and then this
projected nonterminal is popped and used as
the label of a new constituent, and furthermore,
one more item on the top of stack is popped as
the leftmost child of the new constituent and the
popped subtrees as its rest children. This new
completed constituent is pushed onto the stack
as a single composite item.

• FINISH: pop the root node off the stack and
ends parsing.

The deduction system for the process is shown in
Figure 3(c). Given the sentence in Figure 1, the
sequence of actions SHIFT, PJ-NP, SHIFT, SHIFT,
REDUCE, PJ-S, SHIFT, PJ-VP, SHIFT, PJ-NP,
SHIFT, REDUCE, REDUCE, SHIFT, REDUCE, FIN-
ISH can be used to construct its constituent tree.

Variants The in-order system can be gener-
alized into variants by modifying k, the number of
leftmost nodes traced before the parent node. For
example, given the tree “(S a b c d)”, the traversal is
“a S b c d” if k = 1 while the traversal is “a b S c
d” if k = 2. We name each variant with a certain k

value as k-in-order systems. In this paper, we only
investigate the in-order system with k = 1, the 1-in-
order system. Note that the top-down parser can be
regarded as a special case of a generalized version
of the in-order parser with k = 0, and the bottom-up
parser can be regarded as a special case with k = 1.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

• Generalization
– In-‐Order system can be generalized into variants
by modifying k, the number of leftmost nodes
traced before the parent node.

– If k = 0, top-‐down system is a special case

– If k = inf, bottom-‐up system is a special case

In-‐Order Constituent	 parsing

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

In-‐Order Constituent	 parsing

•Models

softmax

a2

a1

xjxj-1xj-2

si-1

a0

stack

buffer

action

sisi-2

Figure 4: Framework of our transition-based
parsers.

4 Neural parsing model

We employ the stack-LSTM parsing model of Dyer
et al. (2016) for the three types of transition-based
parsing systems in Section 2.1, 2.2 and 3, respec-
tively, where a stack-LSTM is used to represent the
stack, a stack-LSTM is used to represent the buffer,
and a vanilla LSTM is used to represent the action
history, as shown in Figure 4.

4.1 Word representation

We follow Dyer et al. (2015), representing each
word using three different types of embeddings, in-
cluding pretrained word embedding, e

wi , which is
not fine-tuned during training of the parser, ran-
domly initialized embeddings e

wi , which is fine-
tuned, and the randomly initialized part-of-speech
embeddings, which is fine-tuned. The three embed-
dings are concatenated, and then fed to nonlinear
layer to derive the final word embedding:

x

i

= f(W
input

[e
pi ; ewi ; ewi] + b

input

),

where W

input

and b

input

are model parameters, w
i

and p

i

denote the form and the POS tag of the ith
input word, respectively, and f is an nonlinear func-
tion. In this paper, we use ReLu for f .

The little boy

NP

little boy

NP-r*

(a) Unbinarized composition

(b) Binarized composition

The little boy
NP NP

NP boy little NP

Figure 5: The composition function. (a) is for un-
binarized trees and (b) is for binarized trees, where
“NP-r*” means that “little boy” is a non-completed
noun phrase with head “boy”.

4.2 Stack representation
We employ a bidirectional LSTM as the compo-
sition function to represent constituents on stack3.
For top-down parsing and in-order parsing, follow-
ing Dyer et al. (2016), as shown in Figure 5(a), the
composition representation s

comp

is computed as:

s

comp

= (LSTM
fwd

[e
nt

, s0, ..., sm];
LSTM

bwd

[e
nt

, s

m

, ..., s0]),

where e

nt

is the representation of a non-terminal,
s

j

, j 2 [0,m] is the jth child node, and m is the
number of the child nodes. For bottom-up parsing,
we make use of head information in the composition
function by requiring the order that the head node
is always before the non-head node in the bidirec-
tional LSTM, as shown in Figure 5(b)4. The bina-

3To be fair, we use bidirectional LSTM as composition func-
tion for all parsing systems

4A bidirectional LSTM consists of two LSTMs, making it
balanced for composition. However, they have different param-
eters so that one represents information of head-first while other
represents information of head-last.

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

In-‐Order Constituent	 parsing

•Results
•English Constituent Results (on WSJ Section 23)

Model LR LP F1

Top-down parser 91.59 91.66 91.62
Bottom-up parser 91.89 91.83 91.86
In-order parser 91.98 91.86 91.92

Table 2: Development results (%) on WSJ 22.

Model F1

fully-supervision
Top-down parser 91.2
Bottom-up parser 91.3
In-order parser 91.8
rerank
Top-down parser 93.3
Bottom-up parser 93.3
In-order parser 93.6

Table 3: Final results (%) on WSJ section 23.

tion 4), respectively, with exponentiation strategy
(↵ = 0.8) by using probability distribution of ac-
tion (equation *). We adopt the reranker of Choe
and Charniak (2016) as both our English fully-
supervised reranker and semi-supervised reranker,
and the generative reranker of Dyer et al. (2016) as
our Chinese supervised reranker.

5.3 Development experiments

Table 2 shows the development results of the three
parsing systems. The bottom-up system performs
slightly better than the top-down system. The in-
order system outperforms both the bottom-up and
the top-down system.

5.4 Results

Table 3 shows the parsing results on the English
test dataset. We find that the bottom-up parser and
the top-down parser have similar results under the
greedy setting, and the in-order parser outperforms
both of them. Also, with supervised reranking, the
in-order parser achieves the best results.

English constituent results We compare our
models with previous work, as shown in Table
4. With the fully-supervision setting5, the in-
order parser outperforms the state-of-the-art discrete
parser (Shindo et al., 2012; Zhu et al., 2013), the
state-of-the-art neural parsers (Cross and Huang,

5Here, we only consider the work of single model

Model F1

fully-supervision
Socher et al. (2013) 90.4
Zhu et al. (2013) 90.4
Vinyals et al. (2015) 90.7
Watanabe and Sumita (2015) 90.7
Shindo et al. (2012) 91.1
Durrett and Klein (2015) 91.1
Dyer et al. (2016) 91.2
Cross and Huang (2016) 91.3
Liu and Zhang (2017) 91.7
Top-down parser 91.2
Bottom-up parser 91.3
In-order parser 91.8
reranking
Huang (2008) 91.7
Charniak and Johnson (2005) 91.5
Choe and Charniak (2016) 92.6
Dyer et al. (2016) 93.3
Kuncoro et al. (2017) 93.6
Top-down parser 93.3
Bottom-up parser 93.3
In-order parser 93.6
semi-supervised reranking
Choe and Charniak (2016) 93.8
In-order parser 94.2

Table 4: Final results (%) on WSJ section 23.

2016; Watanabe and Sumita, 2015) and the state-
of-the-art hybrid parsers (Durrett and Klein, 2015;
Liu and Zhang, 2017), achieving the state-of-the-
art results. With the reranking setting, the in-order
parser outperforms the best discrete parser (Huang,
2008) and have the same performance of Kuncoro
et al. (2017), which extend the work of Dyer et
al. (2016) by adding gated attention mechanism on
composition functions. With the semi-supervised
setting, the in-order parser outperforms the best
semi-supervised parser (Choe and Charniak, 2016)
by achieving 94.2 F1.

English dependency results As shown in Table
5, by converting to Stanford Dependencies, without
additional training data, our models achieves similar
performance with the state-of-the-art system (Choe
and Charniak, 2016); with the same additional train-
ing data, our models achieves new state-of-the-art
results on dependency parsing by achieving 96.2%
UAS and 95.2% LAS on standard benchmark.

Chinese constituent results Table 6 shows
the final results on Chinese test dataset. The in-
order parser achieves the best results under hte fully-

Model LR LP F1

Top-down parser 91.59 91.66 91.62
Bottom-up parser 91.89 91.83 91.86
In-order parser 91.98 91.86 91.92

Table 2: Development results (%) on WSJ 22.

Model F1

fully-supervision
Top-down parser 91.2
Bottom-up parser 91.3
In-order parser 91.8
rerank
Top-down parser 93.3
Bottom-up parser 93.3
In-order parser 93.6

Table 3: Final results (%) on WSJ section 23.

tion 4), respectively, with exponentiation strategy
(↵ = 0.8) by using probability distribution of ac-
tion (equation *). We adopt the reranker of Choe
and Charniak (2016) as both our English fully-
supervised reranker and semi-supervised reranker,
and the generative reranker of Dyer et al. (2016) as
our Chinese supervised reranker.

5.3 Development experiments

Table 2 shows the development results of the three
parsing systems. The bottom-up system performs
slightly better than the top-down system. The in-
order system outperforms both the bottom-up and
the top-down system.

5.4 Results

Table 3 shows the parsing results on the English
test dataset. We find that the bottom-up parser and
the top-down parser have similar results under the
greedy setting, and the in-order parser outperforms
both of them. Also, with supervised reranking, the
in-order parser achieves the best results.

English constituent results We compare our
models with previous work, as shown in Table
4. With the fully-supervision setting5, the in-
order parser outperforms the state-of-the-art discrete
parser (Shindo et al., 2012; Zhu et al., 2013), the
state-of-the-art neural parsers (Cross and Huang,

5Here, we only consider the work of single model

Model F1

fully-supervision
Socher et al. (2013) 90.4
Zhu et al. (2013) 90.4
Vinyals et al. (2015) 90.7
Watanabe and Sumita (2015) 90.7
Shindo et al. (2012) 91.1
Durrett and Klein (2015) 91.1
Dyer et al. (2016) 91.2
Cross and Huang (2016) 91.3
Liu and Zhang (2017) 91.7
Top-down parser 91.2
Bottom-up parser 91.3
In-order parser 91.8
reranking
Huang (2008) 91.7
Charniak and Johnson (2005) 91.5
Choe and Charniak (2016) 92.6
Dyer et al. (2016) 93.3
Kuncoro et al. (2017) 93.6
Top-down parser 93.3
Bottom-up parser 93.3
In-order parser 93.6
semi-supervised reranking
Choe and Charniak (2016) 93.8
In-order parser 94.2

Table 4: Final results (%) on WSJ section 23.

2016; Watanabe and Sumita, 2015) and the state-
of-the-art hybrid parsers (Durrett and Klein, 2015;
Liu and Zhang, 2017), achieving the state-of-the-
art results. With the reranking setting, the in-order
parser outperforms the best discrete parser (Huang,
2008) and have the same performance of Kuncoro
et al. (2017), which extend the work of Dyer et
al. (2016) by adding gated attention mechanism on
composition functions. With the semi-supervised
setting, the in-order parser outperforms the best
semi-supervised parser (Choe and Charniak, 2016)
by achieving 94.2 F1.

English dependency results As shown in Table
5, by converting to Stanford Dependencies, without
additional training data, our models achieves similar
performance with the state-of-the-art system (Choe
and Charniak, 2016); with the same additional train-
ing data, our models achieves new state-of-the-art
results on dependency parsing by achieving 96.2%
UAS and 95.2% LAS on standard benchmark.

Chinese constituent results Table 6 shows
the final results on Chinese test dataset. The in-
order parser achieves the best results under hte fully-

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

In-‐Order Constituent	 parsing

•Results
•English Dependency Results(on WSJ Section 23)

Model UAS LAS
Kiperwasser and Goldberg (2016)† 93.9 91.9
Cheng et al. (2016) † 94.1 91.5
Andor et al. (2016) 94.6 92.8
Dyer et al. (2016) -re 95.6 94.4
Dozat and Manning (2017)† 95.7 94.0
Kuncoro et al. (2017) -re 95.7 94.5
Choe and Charniak (2016) -sre 95.9 94.1
In-order parser 94.5 93.4
In-order parser -re 95.9 94.9
In-order parser -sre 96.2 95.2

Table 5: Stanford Dependency accuracy (%) on
WSJ section 23. † means graph-based parsing. “-re”
means fully-supervised reranking and “-sre” means
semi-supervised reranking.

Parser F1

fully-supervision
Zhu et al. (2013) 83.2
Wang et al. (2015) 83.2
Dyer et al. (2016) 84.6
Liu and Zhang (2017) 85.5
Top-down parser 84.6
Bottom-up parser 85.7
In-order parser 86.1
rerank
Charniak and Johnson (2005) 82.3
Dyer et al. (2016) 86.9
Top-down parser 86.9
Bottom-up parser 87.5
In-order parser 88.0
semi-supervision
Zhu et al. (2013) 85.6
Wang and Xue (2014) 86.3
Wang et al. (2015) 86.6

Table 6: Final results on test set of CTB.

supervised setting. With the supervised reranking,
the in-order parser outperforms the state-of-the-art
models by achieving 88.0 F1.

Chinese dependency results As shown in Table
7, by converting the results to dependencies6, our fi-
nal model achieves the best results among transition-
based parsing, and obtains comparable results to the
state-of-the-art graph-based models.

6The Penn2Malt tool is used with Chinese head rules
https://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html

Model UAS LAS
Dyer et al. (2016) 85.5 84.0
Ballesteros et al. (2016) 87.7 86.2
Kiperwasser and Goldberg (2016) 87.6 86.1
Cheng et al. (2016) † 88.1 85.7
Dozat and Manning (2017) † 89.3 88.2
In-order parser 87.4 86.4
In-order parser -re 89.4 88.4

Table 7: Dependency accuracy (%) on CTB test set.
† means graph-based parsing. “-re” means super-
vised reranking.

6 Analysis

We analyze the results of section 23 in WSJ given
by our model (i.e. in-order parser) and two baseline
models (i.e. the bottom-up parser and the top-down
parser) against the sentence length, the span length
and the constituent type, respectively.

6.1 Influence of sentence length
Figure 6 shows the F1 scores of the three parsers
on sentences of different lengths. Compared to the
top-down parser, the bottom-up parser perform bet-
ter on the short sentences with the length falling
in the range [20-40]. This is likely because the
bottom-up parser takes advantages of rich local fea-
tures from partially-built trees, which are useful for
parsing short sentences. But these local structures
are can be insufficient for parsing long sentences
due to error propagation. On the other hand, the
top-down parser obtain better results on long sen-
tences with the length falling in the range [40-50].
This is because, as the length of sentences increase,
lookahead features become rich and they could be
correctly represented by the LSTM, which is bene-
ficial for parsing non-local structures. We find that
the in-order parser performs the best for both short
and long sentences, showing the advantages of inte-
grating bottom-up and top-down information.

6.2 Influence of span length
Figure 7 shows the F1 scores of the three parsers
on spans of different lengths. The trend of perfor-
mances of the two baseline parsers are similar. Com-
pared to the baseline parsers, the in-order parser ob-
tains significant improvement on long spans. It is
linguistically because the in-order traversal over a

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

In-‐Order Constituent	 parsing

•Results
•Chinese Constituent Results (on CTB Test set)

Model UAS LAS
Kiperwasser and Goldberg (2016)† 93.9 91.9
Cheng et al. (2016) † 94.1 91.5
Andor et al. (2016) 94.6 92.8
Dyer et al. (2016) -re 95.6 94.4
Dozat and Manning (2017)† 95.7 94.0
Kuncoro et al. (2017) -re 95.7 94.5
Choe and Charniak (2016) -sre 95.9 94.1
In-order parser 94.5 93.4
In-order parser -re 95.9 94.9
In-order parser -sre 96.2 95.2

Table 5: Stanford Dependency accuracy (%) on
WSJ section 23. † means graph-based parsing. “-re”
means fully-supervised reranking and “-sre” means
semi-supervised reranking.

Parser F1

fully-supervision
Zhu et al. (2013) 83.2
Wang et al. (2015) 83.2
Dyer et al. (2016) 84.6
Liu and Zhang (2017) 85.5
Top-down parser 84.6
Bottom-up parser 85.7
In-order parser 86.1
rerank
Charniak and Johnson (2005) 82.3
Dyer et al. (2016) 86.9
Top-down parser 86.9
Bottom-up parser 87.5
In-order parser 88.0
semi-supervision
Zhu et al. (2013) 85.6
Wang and Xue (2014) 86.3
Wang et al. (2015) 86.6

Table 6: Final results on test set of CTB.

supervised setting. With the supervised reranking,
the in-order parser outperforms the state-of-the-art
models by achieving 88.0 F1.

Chinese dependency results As shown in Table
7, by converting the results to dependencies6, our fi-
nal model achieves the best results among transition-
based parsing, and obtains comparable results to the
state-of-the-art graph-based models.

6The Penn2Malt tool is used with Chinese head rules
https://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html

Model UAS LAS
Dyer et al. (2016) 85.5 84.0
Ballesteros et al. (2016) 87.7 86.2
Kiperwasser and Goldberg (2016) 87.6 86.1
Cheng et al. (2016) † 88.1 85.7
Dozat and Manning (2017) † 89.3 88.2
In-order parser 87.4 86.4
In-order parser -re 89.4 88.4

Table 7: Dependency accuracy (%) on CTB test set.
† means graph-based parsing. “-re” means super-
vised reranking.

6 Analysis

We analyze the results of section 23 in WSJ given
by our model (i.e. in-order parser) and two baseline
models (i.e. the bottom-up parser and the top-down
parser) against the sentence length, the span length
and the constituent type, respectively.

6.1 Influence of sentence length
Figure 6 shows the F1 scores of the three parsers
on sentences of different lengths. Compared to the
top-down parser, the bottom-up parser perform bet-
ter on the short sentences with the length falling
in the range [20-40]. This is likely because the
bottom-up parser takes advantages of rich local fea-
tures from partially-built trees, which are useful for
parsing short sentences. But these local structures
are can be insufficient for parsing long sentences
due to error propagation. On the other hand, the
top-down parser obtain better results on long sen-
tences with the length falling in the range [40-50].
This is because, as the length of sentences increase,
lookahead features become rich and they could be
correctly represented by the LSTM, which is bene-
ficial for parsing non-local structures. We find that
the in-order parser performs the best for both short
and long sentences, showing the advantages of inte-
grating bottom-up and top-down information.

6.2 Influence of span length
Figure 7 shows the F1 scores of the three parsers
on spans of different lengths. The trend of perfor-
mances of the two baseline parsers are similar. Com-
pared to the baseline parsers, the in-order parser ob-
tains significant improvement on long spans. It is
linguistically because the in-order traversal over a

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

In-‐Order Constituent	 parsing

•Results
•Chinese Dependency Results(on	 CTB	 Test	 set)

Model UAS LAS
Kiperwasser and Goldberg (2016)† 93.9 91.9
Cheng et al. (2016) † 94.1 91.5
Andor et al. (2016) 94.6 92.8
Dyer et al. (2016) -re 95.6 94.4
Dozat and Manning (2017)† 95.7 94.0
Kuncoro et al. (2017) -re 95.7 94.5
Choe and Charniak (2016) -sre 95.9 94.1
In-order parser 94.5 93.4
In-order parser -re 95.9 94.9
In-order parser -sre 96.2 95.2

Table 5: Stanford Dependency accuracy (%) on
WSJ section 23. † means graph-based parsing. “-re”
means fully-supervised reranking and “-sre” means
semi-supervised reranking.

Parser F1

fully-supervision
Zhu et al. (2013) 83.2
Wang et al. (2015) 83.2
Dyer et al. (2016) 84.6
Liu and Zhang (2017) 85.5
Top-down parser 84.6
Bottom-up parser 85.7
In-order parser 86.1
rerank
Charniak and Johnson (2005) 82.3
Dyer et al. (2016) 86.9
Top-down parser 86.9
Bottom-up parser 87.5
In-order parser 88.0
semi-supervision
Zhu et al. (2013) 85.6
Wang and Xue (2014) 86.3
Wang et al. (2015) 86.6

Table 6: Final results on test set of CTB.

supervised setting. With the supervised reranking,
the in-order parser outperforms the state-of-the-art
models by achieving 88.0 F1.

Chinese dependency results As shown in Table
7, by converting the results to dependencies6, our fi-
nal model achieves the best results among transition-
based parsing, and obtains comparable results to the
state-of-the-art graph-based models.

6The Penn2Malt tool is used with Chinese head rules
https://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html

Model UAS LAS
Dyer et al. (2016) 85.5 84.0
Ballesteros et al. (2016) 87.7 86.2
Kiperwasser and Goldberg (2016) 87.6 86.1
Cheng et al. (2016) † 88.1 85.7
Dozat and Manning (2017) † 89.3 88.2
In-order parser 87.4 86.4
In-order parser -re 89.4 88.4

Table 7: Dependency accuracy (%) on CTB test set.
† means graph-based parsing. “-re” means super-
vised reranking.

6 Analysis

We analyze the results of section 23 in WSJ given
by our model (i.e. in-order parser) and two baseline
models (i.e. the bottom-up parser and the top-down
parser) against the sentence length, the span length
and the constituent type, respectively.

6.1 Influence of sentence length
Figure 6 shows the F1 scores of the three parsers
on sentences of different lengths. Compared to the
top-down parser, the bottom-up parser perform bet-
ter on the short sentences with the length falling
in the range [20-40]. This is likely because the
bottom-up parser takes advantages of rich local fea-
tures from partially-built trees, which are useful for
parsing short sentences. But these local structures
are can be insufficient for parsing long sentences
due to error propagation. On the other hand, the
top-down parser obtain better results on long sen-
tences with the length falling in the range [40-50].
This is because, as the length of sentences increase,
lookahead features become rich and they could be
correctly represented by the LSTM, which is bene-
ficial for parsing non-local structures. We find that
the in-order parser performs the best for both short
and long sentences, showing the advantages of inte-
grating bottom-up and top-down information.

6.2 Influence of span length
Figure 7 shows the F1 scores of the three parsers
on spans of different lengths. The trend of perfor-
mances of the two baseline parsers are similar. Com-
pared to the baseline parsers, the in-order parser ob-
tains significant improvement on long spans. It is
linguistically because the in-order traversal over a

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

In-‐Order Constituent	 parsing

•Results
•Comparison with other system

NP VP S PP SBAR ADVP ADJP WHNP QP
Top-down parser 92.87 92.51 91.36 87.96 86.74 85.21 75.41 96.44 89.41
Bottom-up parser 93.01 92.20 91.46 87.95 86.81 84.58 74.84 94.99 89.95
In-order parser 93.23 92.83 91.87 88.97 88.05 86.30 76.62 96.75 92.16
Improvement +0.22 +0.32 +0.41 +1.01 +1.04 +1.09 +1.21 +0.31 +2.01

Table 8: Comparison on different phrases types.

10 20 30 40 50 60
86

88

90

92

94

Sentence length

F 1
(%

)

Top-down parser
Bottom-up parser

In-order parser

Figure 6: F1 score against sentence length. (the
number of words in a sentence, in bins of size 10,
where 20 contains sentences with lengths in [10,
20).)

2 4 6 8 10 12 14
85

90

95

span length

F 1
(%

)

Top-down parser
Bottom-up parser

In-order parser

Figure 7: F1 score against span length.

tree allows constituent types of spans to be correctly
projected based on the information of the beginning
(leftmost nodes) of the spans, and then the projected
constituents constrain long span construction, which
is different from the top-down parser, which gener-
ates constituent types of spans without trace of the
spans.

6.3 Influence of constituent type
Table 7 shows the F1 scores of the three parsers on
frequent constituent types. The bottom-up parser
performs better than the top-down parser on con-

stituent types including NP, S, SBAR, QP. We find
that the prediction of these constituent types re-
quires explicitly modeling of bottom-up structures.
In other words, bottom-up information is necessary
for us to know if the span can be a noun phrase (NP)
or sentence (S) for example. On the other hand, the
top-down parser has better performance on WHNP,
which can be due to the reason that a WHNP starts
with a certain question word, which makes the pre-
diction is easy without bottom-up information. The
in-order parser performs the best on all constituent
types, which demonstrates that the in-order parser
can benefit from both bottom-up and top-down in-
formation.

6.4 Examples
We give output examples from the test set to qualita-
tively compare the performances of the three parsers
using the fully-supervised model without reranking,
as shown in Table 9. For example, given the sen-
tence #2006, the bottom-up and the in-order parsers
give both correct results. However, the top-down
parser makes an incorrect decision to generate an S,
which leads subsequent incorrect decisions on VP
to complete S. Sentence pattern ambiguaty allows
top-down guidance to over-parsing the sentence by
recognizing the word “Plans” as a verb, while more
bottom-up information is useful for the local disam-
biguation.

Given the sentence #308, the bottom-up parser
prefers construction of local constituents such as
“once producers and customers”, ignoring the possi-
ble clause SBAR, however, which is captured by the
in-order parser, because the parser projects a con-
stituent SBAR from the word “stick” and contin-
ues to complete the clause, showing that top-down
lookahead information is necessary for non-local
disambiguation. The in-order parser gives the cor-
rect output for the sentence #2066 and the sentence
#308, showing that it can benefit from bottom-up

NP VP S PP SBAR ADVP ADJP WHNP QP
Top-down parser 92.87 92.51 91.36 87.96 86.74 85.21 75.41 96.44 89.41
Bottom-up parser 93.01 92.20 91.46 87.95 86.81 84.58 74.84 94.99 89.95
In-order parser 93.23 92.83 91.87 88.97 88.05 86.30 76.62 96.75 92.16
Improvement +0.22 +0.32 +0.41 +1.01 +1.04 +1.09 +1.21 +0.31 +2.01

Table 8: Comparison on different phrases types.

10 20 30 40 50 60
86

88

90

92

94

Sentence length

F 1
(%

)

Top-down parser
Bottom-up parser

In-order parser

Figure 6: F1 score against sentence length. (the
number of words in a sentence, in bins of size 10,
where 20 contains sentences with lengths in [10,
20).)

2 4 6 8 10 12 14
85

90

95

span length
F 1

(%
)

Top-down parser
Bottom-up parser

In-order parser

Figure 7: F1 score against span length.

tree allows constituent types of spans to be correctly
projected based on the information of the beginning
(leftmost nodes) of the spans, and then the projected
constituents constrain long span construction, which
is different from the top-down parser, which gener-
ates constituent types of spans without trace of the
spans.

6.3 Influence of constituent type
Table 7 shows the F1 scores of the three parsers on
frequent constituent types. The bottom-up parser
performs better than the top-down parser on con-

stituent types including NP, S, SBAR, QP. We find
that the prediction of these constituent types re-
quires explicitly modeling of bottom-up structures.
In other words, bottom-up information is necessary
for us to know if the span can be a noun phrase (NP)
or sentence (S) for example. On the other hand, the
top-down parser has better performance on WHNP,
which can be due to the reason that a WHNP starts
with a certain question word, which makes the pre-
diction is easy without bottom-up information. The
in-order parser performs the best on all constituent
types, which demonstrates that the in-order parser
can benefit from both bottom-up and top-down in-
formation.

6.4 Examples
We give output examples from the test set to qualita-
tively compare the performances of the three parsers
using the fully-supervised model without reranking,
as shown in Table 9. For example, given the sen-
tence #2006, the bottom-up and the in-order parsers
give both correct results. However, the top-down
parser makes an incorrect decision to generate an S,
which leads subsequent incorrect decisions on VP
to complete S. Sentence pattern ambiguaty allows
top-down guidance to over-parsing the sentence by
recognizing the word “Plans” as a verb, while more
bottom-up information is useful for the local disam-
biguation.

Given the sentence #308, the bottom-up parser
prefers construction of local constituents such as
“once producers and customers”, ignoring the possi-
ble clause SBAR, however, which is captured by the
in-order parser, because the parser projects a con-
stituent SBAR from the word “stick” and contin-
ues to complete the clause, showing that top-down
lookahead information is necessary for non-local
disambiguation. The in-order parser gives the cor-
rect output for the sentence #2066 and the sentence
#308, showing that it can benefit from bottom-up

Jiangming Liu, Yue Zhang, In-Order Transition-based Constituent Parsing. In TACL(2017)

Span-‐Based	 Constituency	 Parsing

Cross,	 James,	 and	 Liang	 Huang.	 “Span-‐based	 constituency	 parsing	 with	 a	 structure-‐label	 system	 and	 provably	 optimal	
dynamic	 oracles.” In EMNLP (2016).

•Example
S

VP

S

VP

NP

NN

4 fish 5

VBG

3 eating

VBP

2 like

MD

1 do

NP

PRP

0 I

steps structural action label action stack after bracket
1–2 sh(I/PRP) label-NP 0Some text and the symbol or scaled

1

1 0NP1
3–4 sh(do/MD) nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2

5–6 sh(like/VBP) nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2Some text and the symbol or scaled

1

3

7–8 comb nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3

9–10 sh(eating/VBG) nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3Some text and the symbol or scaled

1

4

11–12 sh(fish/NN) label-NP 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3Some text and the symbol or scaled

1

4Some text and the symbol or scaled

1

5 4NP5
13–14 comb label-S-VP 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3Some text and the symbol or scaled

1

5 3S5, 3VP5
15–16 comb label-VP 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

5 1VP5
17–18 comb label-S 0Some text and the symbol or scaled

1

5 0S5

(a) gold parse tree (b) static oracle actions

Figure 2: The running example. It contains one ternary branch and one unary chain (S-VP), and NP-PRP-I and NP-NN-fish are
not unary chains in our system. Each stack is just a list of numbers but is visualized with spans here.

since the parser must produce a tree.
Figure 2 shows a complete example of applying

this parsing system to a very short sentence (“I do
like eating fish”) that we will use throughout this
section and the next. The action in step 2 is label-
NP because “I” is a one-word noun phrase (parts
of speech are taken as input to our parser, though
it could easily be adapted to include POS tagging
in label actions). If a single word is not a complete
phrase (e.g., “do”), then the action after a shift is
nolabel.

The ternary branch in this tree (VP ! MD VBP S)
is produced by our parser in a straightforward man-
ner: after the phrase “do like” is combined in step
7, no label is assigned in step 8, successfully delay-
ing the creation of a bracket until the verb phrase is
fully formed on the stack. Note also that the unary
production in the tree is created with a single action,
label-S-VP, in step 14.

The static oracle to train this parser simply con-
sists of taking actions to generate the gold tree
with a “short-stack” heuristic, meaning combine first
whenever combine and shift are both possible.

3 LSTM Span Features

Long short-term memory networks (LSTM) are a
type of recurrent neural network model proposed by
Hochreiter and Schmidhuber (1997) which are very
effective for modeling sequences. They are able
to capture and generalize from interactions among
their sequential inputs even when separated by a
long distance, and thus are a natural fit for analyz-

ing natural language. LSTM models have proved to
be a powerful tool for many learning tasks in natural
language, such as language modeling (Sundermeyer
et al., 2012) and translation (Sutskever et al., 2014).

LSTMs have also been incorporated into parsing
in a variety of ways, such as directly encoding an en-
tire sentence (Vinyals et al., 2015), separately mod-
eling the stack, buffer, and action history (Dyer et
al., 2015), to encode words based on their character
forms (Ballesteros et al., 2015), and as an element
in a recursive structure to combine dependency sub-
trees with their left and right children (Kiperwasser
and Goldberg, 2016a).

For our parsing system, however, we need a way
to model arbitrary sentence spans in the context of
the rest of the sentence. We do this by representing
each sentence span as the elementwise difference of
the vector outputs of the LSTM outputs at different
time steps, which correspond to word boundaries.
If the sequential output of the recurrent network for
the sentence is f0, ..., fn in the forward direction and
bn, ..., b0 in the backward direction then the span
(i, j) would be represented as the concatenation of
the vector differences (fj � fi) and (bi � bj).

The spans are represented using output from both
backward and forward LSTM components, as can
be seen in Figure 3. This is essentially the LSTM-
Minus feature representation described by Wang and
Chang (2016) extended to the bi-directional case. In
initial experiments, we found that there was essen-
tially no difference in performance between using
the difference features and concatenating all end-

Span-‐Based	 Constituency	 Parsing

Cross,	 James,	 and	 Liang	 Huang.	 “Span-‐based	 constituency	 parsing	 with	 a	 structure-‐label	 system	 and	 provably	 optimal	
dynamic	 oracles.” In EMNLP (2016).

•Models

hsi I do like eating fish h/si0

f0

b0

1

f1

b1

2

f2

b2

3

f3

b3

4

f4

b4

5

f5

b5

Figure 3: Word spans are modeled by differences in LSTM
output. Here the span 3 eating fish 5 is represented by the vector
differences (f5 � f3) and (b3 � b5). The forward difference
corresponds to LSTM-Minus (Wang and Chang, 2016).

point vectors, but our approach is almost twice as
fast.

This model allows a sentence to be processed
once, and then the same recurrent outputs can be
used to compute span features throughout the parse.
Intuitively, this allows the span differences to learn
to represent the sentence spans in the context of the
rest of the sentence, not in isolation (especially true
for LSTM given the extra hidden recurrent connec-
tion, typically described as a “memory cell”). In
practice, we use a two-layer bi-directional LSTM,
where the input to the second layer combines the
forward and backward outputs from the first layer
at that time step. For each direction, the components
from the first and second layers are concatenated to
form the vectors which go into the span features. See
Cross and Huang (2016) for more details on this ap-
proach.

For the particular case of our transition con-
stituency parser, we use only four span features to
determine a structural action, and three to determine
a label action, in each case partitioning the sentence
exactly. The reason for this is straightforward: when
considering a structural action, the top two spans on
the stack must be considered to determine whether
they should be combined, while for a label action,
only the top span on the stack is important, since that
is the candidate for labeling. In both cases the re-
maining sentence prefix and suffix are also included.
These features are shown in Table 1.

The input to the recurrent network at each time
step consists of vector embeddings for each word

Action Stack LSTM Span Features
Structural � | i |k |j 02i��m� ��x� an� ��� ��m��� �� ��a���

1

k��m� ��x� an� ��� ��m��� �� ��a���

1

j2n

Label � | i |j 02i��m� ��x� an� ��� ��m��� �� ��a���

1

j2n

Table 1: Features used for the parser. No label or tree-structure
features are required.

and its part-of-speech tag. Parts of speech are pre-
dicted beforehand and taken as input to the parser,
as in much recent work in parsing. In our experi-
ments, the embeddings are randomly initialized and
learned from scratch together with all other network
weights, and we would expect further performance
improvement from incorporating embeddings pre-
trained from a large external corpus.

The network structure after the the span features
consists of a separate multilayer perceptron for each
type of action (structural and label). For each ac-
tion we use a single hidden layer with rectified linear
(ReLU) activation. The model is trained on a per-
action basis using a single correct action for each
parser state, with a negative log softmax loss func-
tion, as in Chen and Manning (2014).

4 Dynamic Oracle

The baseline method of training our parser is what
is known as a static oracle: we simply generate the
sequence of actions to correctly parse each training
sentence, using a short-stack heuristic (i.e., combine
first whenever there is a choice of shift and com-
bine). This method suffers from a well-documeted
problem, however, namely that it only “prepares”
the model for the situation where no mistakes have
been made during parsing, an inevitably incorrect
assumption in practice. To alleviate this problem,
Goldberg and Nivre (2013) define a dynamic oracle
to return the best possible action(s) at any arbitrary
configuration.

In this section, we introduce an easy-to-compute
optimal dynamic oracle for our constituency parser.
We will first define some concepts upon which the
dynamic oracle is built and then show how optimal
actions can be very efficiently computed using this
framework. In broad strokes, in any arbitrary parser
configuration c there is a set of brackets t⇤(c) from
the gold tree which it is still possible to reach. By
following dynamic oracle actions, all of those brack-
ets and only those brackets will be predicted.

4

(a) Words spans modeling
from LSTM output

Even though proving the optimality of our dy-
namic oracle (Sec. 4.3) is involved, computing the
oracle actions is extremely simple (Secs. 4.2) and
efficient (Sec. 4.4).

4.1 Preliminaries and Notations

Before describing the computation of our dynamic
oracle, we first need to rigorously establish the de-
sired optimality of dynamic oracle. The structure of
this framework follows Goldberg et al. (2014).

Definition 1. We denote c `⌧ c0 iff. c0 is the result
of action ⌧ on configuration c, also denoted func-
tionally as c0 = ⌧(c). We denote ` to be the union
of `⌧ for all actions ⌧ , and `⇤ to be the reflexive and
transitive closure of `.

Definition 2 (descendant/reachable trees). We de-
note D(c) to be the set of final descendant trees
derivable from c, i.e., D(c) = {t | c `⇤ hz, �, ti}.
This set is also called “reachable trees” from c.

Definition 3 (F1). We define the standard F1 metric
of a tree t with respect to gold tree tG as F1(t) =
2rp
r+p , where r =

|t\tG|
|tG| , p =

|t\tG|
|t| .

The following two definitions are similar to those
for dependency parsing by Goldberg et al. (2014).

Definition 4. We extend the F1 function to config-
urations to define the maximum possible F1 from a
given configuration: F1(c) = maxt12D(c) F1(t1).

Definition 5 (oracle). We can now define the desired
dynamic oracle of a configuration c to be the set of
actions that retrain the optimal F1:

oracle(c) = {⌧ | F1(⌧(c)) = F1(c)}.

This abstract oracle is implemented by dyna(·) in
Sec. 4.2, which we prove to be correct in Sec. 4.3.

Definition 6 (span encompassing). We say span
(i, j) is encompassed by span (p, q), notated (i, j) �
(p, q), iff. p i < j q.

Definition 7 (strict encompassing). We say span
(i, j) is strictly encompassed by span (p, q), notated
(i, j) � (p, q), iff. (i, j) � (p, q) and (i, j) 6= (p, q).
We then extend this relation from spans to brackets,
and notate iXj � pYq iff. (i, j) � (p, q).

0S5

1VP5

3S/VP5

4NP5

0��m� ��x� an� ��� ��m��� �� ��a���

1

1��m� ��x� an� ��� ��m��� �� ��a���

1

2��m� ��x� an� ��� ��m��� �� ��a���

1

4 5

I do like eating fish
Figure 4: Reachable brackets (w.r.t. gold tree in Fig. 1) for
c = h10, [0, 1, 2, 4], {0NP1}i which mistakenly combines
“like eating”. Trapezoids indicate stack spans (the top one in
red), and solid triangles denote reachable brackets, with left(c)

in blue and right(c) in cyan. The next reachable bracket,
next(c) = 1VP5, is in bold. Brackets 3VP5 and 3S5 (in dot-
ted triangle) cross the top span (thus unreachable), and 0NP1 is
already recognized (thus not in reach(c) either).

We next define a central concept, reachable
brackets, which is made up of two parts, the left ones
left(c) which encompass (i, j) without crossing any
stack spans, and the right ones right(c) which are
completely on the queue. See Fig. 4 for examples.
Definition 8 (reachable brackets). For any configu-
ration c = hz, � | i |j, ti, we define the set of reach-
able gold brackets (with respect to gold tree tG) as

reach(c) = left(c) [right(c)

where the left- and right-reachable brackets are

left(c)={pXq 2 tG | (i, j) � (p, q), p 2 � | i}
right(c)={pXq 2 tG | p � j}

for even z, with the � replaced by � for odd z.
Special case (initial): reach(h0, [0], ;i) = tG.
The notation p 2 � | i simply means (p, q) does

not “cross” any bracket on the stack. Remember our
stack is just a list of span boundaries, so if p coin-
cides with one of them, (p, q)’s left boundary is not
crossing and its right boundary q is not crossing ei-
ther since q � j due to (i, j) � (p, q).

Also note that reach(c) is strictly disjoint from t,
i.e., reach(c) \ t = ; and reach(c) ✓ tG � t. See
Figure 6 for an illustration.

5

(b) Dynamic Oracle

Span-‐Based	 Constituency	 Parsing

Cross,	 James,	 and	 Liang	 Huang.	 “Span-‐based	 constituency	 parsing	 with	 a	 structure-‐label	 system	 and	 provably	 optimal	
dynamic	 oracles.” In EMNLP (2016).

•Results
Closed Training & Single Model LR LP F1

Sagae and Lavie (2006) 88.1 87.8 87.9
Petrov and Klein (2007) 90.1 90.3 90.2
Carreras et al. (2008) 90.7 91.4 91.1
Shindo et al. (2012) 91.1
†Socher et al. (2013) 90.4
Zhu et al. (2013) 90.2 90.7 90.4
Mi and Huang (2015) 90.7 90.9 90.8
†Watanabe and Sumita (2015) 90.7
Thang et al. (2015) (A*) 90.9 91.2 91.1
†*Dyer et al. (2016) (discrim.) 89.8
†*Cross and Huang (2016) 90.0
†*static oracle 90.7 91.4 91.0
†*dynamic/exploration 90.5 92.1 91.3
External/Reranking/Combo
†Henderson (2004) (rerank) 89.8 90.4 90.1
McClosky et al. (2006) 92.2 92.6 92.4
Zhu et al. (2013) (semi) 91.1 91.5 91.3
Huang (2008) (forest) 91.7
†Vinyals et al. (2015) (WSJ)‡ 90.5
†Vinyals et al. (2015) (semi) 92.8
†Durrett and Klein (2015)‡ 91.1
†Dyer et al. (2016) (gen. rerank.) 92.4

Table 4: Comparison of performance of different parsers on
PTB test set. †Neural. *Greedy. ‡External embeddings.

Parser LR LP F1

Björkelund et al. (2014)⇤,‡ 82.53
Durrett and Klein (2015)‡ 81.25
Coavoux and Crabbé (2016) 80.56
static oracle 83.50 82.87 83.18
dynamic/exploration 81.90 84.77 83.31

Table 5: Results on French Treebank. ⇤reranking, ‡external.

data set (Seddah et al., 2014). It is thus possible that
results could be improved further using an integrated
or more accurate predictor for those features. Our
parsing and evaluation also includes predicting POS
tags for multi-word expressions as is the standard
practice for the French treebank, though our results
are similar whether or not this aspect is included.

We compare our parser with other recent work in
Table 5. We achieve state-of-the-art results even in
comparison to Björkelund et al. (2014), which uti-
lized both external data and reranking in achieving
the best results in the SPMRL 2014 shared task.

6.4 Notes on Experiments
For these experiments, we performed very little hy-
perparameter tuning, due to time and resource con-
traints. We have every reason to believe that per-
formance could be improved still further with such
techniques as random restarts, larger hidden lay-
ers, external embeddings, and hyperparameter grid
search, as demonstrated by Weiss et al. (2015).

We also note that while our parser is very accu-
rate even with greedy decoding, the model is eas-
ily adaptable for beam search, particularly since the
parsing system already uses a fixed number of ac-
tions. Beam search could also be made considerably
more efficient by caching post-hidden-layer feature
components for sentence spans, essentially using the
precomputation trick described by Chen and Man-
ning (2014), but on a per-sentence basis.

7 Conclusion and Future Work

We have developed a new transition-based con-
stituency parser which is built around sentence
spans. It uses a factored system alternating between
structural and label actions. We also describe a fast
dynamic oracle for this parser which can determine
the optimal set of actions with respect to a gold
training tree in an arbitrary state. Using an LSTM
model and only a few sentence spans as features, we
achieve state-of-the-art accuracy on the Penn Tree-
bank for all parsers without reranking, despite using
strictly greedy inference.

In the future, we hope to achieve still better re-
sults using beam search, which is relatively straight-
forward given that the parsing system already uses
a fixed number of actions. Dynamic programming
(Huang and Sagae, 2010) could be especially pow-
erful in this context given the very simple feature
representation used by our parser, as noted also by
Kiperwasser and Goldberg (2016b).

Acknowledgments

We thank the three anonymous reviewers for com-
ments, Kai Zhao, Lemao Liu, Yoav Goldberg, and
Slav Petrov for suggestions, Juneki Hong for proof-
reading, and Maximin Coavoux for sharing their
manuscript. This project was supported in part
by NSF IIS-1656051, DARPA FA8750-13-2-0041
(DEFT), and a Google Faculty Research Award.

9

Neural	 Joint	 Model

Kurita,	 Shuhei,	 Daisuke	 Kawahara,	 and	 Sadao Kurohashi.	 “Neural	 Joint	 Model	 for	 Transition-‐based	 Chinese	 Syntactic	
Analysis.” In ACL Vol.	 1.	 2017.

•Models

Neural	 Joint	 Model

Kurita,	 Shuhei,	 Daisuke	 Kawahara,	 and	 Sadao Kurohashi.	 “Neural	 Joint	 Model	 for	 Transition-‐based	 Chinese	 Syntactic	
Analysis.” In ACL Vol.	 1.	 2017.

（b）

•Models

（a）

Neural	 Joint	 Model

Kurita,	 Shuhei,	 Daisuke	 Kawahara,	 and	 Sadao Kurohashi.	 “Neural	 Joint	 Model	 for	 Transition-‐based	 Chinese	 Syntactic	
Analysis.” In ACL Vol.	 1.	 2017.

•Results
•Joint	 Segmentation and	 POS	 tagging

Model Seg POS

Hatori+12 SegTag 97.66 93.61
Hatori+12 SegTag(d) 98.18 94.08
Hatori+12 SegTagDep 97.73 94.46
Hatori+12 SegTagDep(d) 98.26 94.64
M. Zhang+14 EAG 97.76 94.36
Y. Zhang+15 98.04 94.47

SegTag(g) 98.41 94.84
SegTag 98.60 94.76

Table 5: Joint segmentation and POS tagging
scores. Both scores are in F-measure. In Ha-
tori et al. (2012), (d) denotes the use of dictio-
naries. (g) denotes greedy trained models. All
scores for previous models are taken from Hatori
et al. (2012), Zhang et al. (2014) and Zhang et al.
(2015).

3.2 Results

3.2.1 Joint Segmentation and POS Tagging

First, we evaluate the joint segmentation and POS
tagging model (SegTag). Table 5 compares the
performance of segmentation and POS tagging us-
ing the CTB-5 dataset. We train two modles: a
greedy-trained model and a model trained with
beams of size 4. We compare our model to three
previous approaches: Hatori et al. (2012), Zhang
et al. (2014) and Zhang et al. (2015). Our SegTag
joint model is superior to these previous models,
including Hatori et al. (2012)’s model with rich
dictionary information, in terms of both segmen-
tation and POS tagging accuracy.

3.2.2 Joint Segmentation, POS Tagging and
Dependency Parsing

Table 6 presents the results of our full joint model.
We employ the greedy trained full joint model
SegTagDep(g) and the beam decoding model Seg-
TagDep. All scores for the existing models in this
table are taken from Zhang et al. (2014). Though
our model surpasses the previous best end-to-end
joint models in terms of segmentation and POS
tagging, the dependency score is slightly lower
than the previous models. The greedy model
SegTagDep(g) achieves slightly lower scores than
beam models, although this model works consid-
erably fast because it does not use beam decoding.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 EAG 97.76 94.36 81.70

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83 81.42

Table 6: Joint Segmentation, POS Tagging and
Dependency Parsing. Hatori et al. (2012)’s CTB-5
scores are reported in Zhang et al. (2014). EAG in
Zhang et al. (2014) denotes the arc-eager model.
(g) denotes greedy trained models.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 STD 97.67 94.28 81.63
M. Zhang+14 EAG 97.76 94.36 81.70
Y. Zhang+15 98.04 94.47 82.01

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83‡ 81.42‡

SegTag+Dep 98.60‡ 94.76‡ 82.60‡

Table 7: The SegTag+Dep model. Note that the
model of Zhang et al. (2015) requires other base
parsers. ‡ denotes that the improvement is statisti-
cally siginificant at p < 0.01 compared with Seg-
TagDep(g) using paired t-test.

3.2.3 Pipeline of Our Joint SegTag and Dep
Model

We use our joint SegTag model for the pipeline
input of the Dep model (SegTag+Dep). Both Seg-
Tag and Dep models are trained and tested by the
beam cost function with beams of size 4. Table
7 presents the results. Our SegTag+Dep model
performs best in terms of the dependency and
word segmentation. The SegTag+Dep model is
better than the full joint model. This is because
most segmentation errors of these models occur
around named entities. Hatori et al. (2012)’s align-
ment step assumes the intra-word dependencies in
words, while named entities do not always have
them. For example, SegTag+Dep model treats
named entity “w[K”, a company name, as one
word, while the SegTagDep model divides this to
“w” (sea) and “[K”, where “[K” could be
used for foreigner’s name. For such words, Seg-
TagDep prefers SH because AP has size-2 step
of the character appending and intra-word depen-
dency resolution, which does not exist for named
entities. This problem could be solved by adding
a special transition AP_named_entity which
is similar to AP but with size-1 step and used

1210

Neural	 Joint	 Model

Kurita,	 Shuhei,	 Daisuke	 Kawahara,	 and	 Sadao Kurohashi.	 “Neural	 Joint	 Model	 for	 Transition-‐based	 Chinese	 Syntactic	
Analysis.” In ACL Vol.	 1.	 2017.

•Results
•Joint Segmentation, POS tagging and Dependency Parsing

Model Seg POS

Hatori+12 SegTag 97.66 93.61
Hatori+12 SegTag(d) 98.18 94.08
Hatori+12 SegTagDep 97.73 94.46
Hatori+12 SegTagDep(d) 98.26 94.64
M. Zhang+14 EAG 97.76 94.36
Y. Zhang+15 98.04 94.47

SegTag(g) 98.41 94.84
SegTag 98.60 94.76

Table 5: Joint segmentation and POS tagging
scores. Both scores are in F-measure. In Ha-
tori et al. (2012), (d) denotes the use of dictio-
naries. (g) denotes greedy trained models. All
scores for previous models are taken from Hatori
et al. (2012), Zhang et al. (2014) and Zhang et al.
(2015).

3.2 Results

3.2.1 Joint Segmentation and POS Tagging

First, we evaluate the joint segmentation and POS
tagging model (SegTag). Table 5 compares the
performance of segmentation and POS tagging us-
ing the CTB-5 dataset. We train two modles: a
greedy-trained model and a model trained with
beams of size 4. We compare our model to three
previous approaches: Hatori et al. (2012), Zhang
et al. (2014) and Zhang et al. (2015). Our SegTag
joint model is superior to these previous models,
including Hatori et al. (2012)’s model with rich
dictionary information, in terms of both segmen-
tation and POS tagging accuracy.

3.2.2 Joint Segmentation, POS Tagging and
Dependency Parsing

Table 6 presents the results of our full joint model.
We employ the greedy trained full joint model
SegTagDep(g) and the beam decoding model Seg-
TagDep. All scores for the existing models in this
table are taken from Zhang et al. (2014). Though
our model surpasses the previous best end-to-end
joint models in terms of segmentation and POS
tagging, the dependency score is slightly lower
than the previous models. The greedy model
SegTagDep(g) achieves slightly lower scores than
beam models, although this model works consid-
erably fast because it does not use beam decoding.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 EAG 97.76 94.36 81.70

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83 81.42

Table 6: Joint Segmentation, POS Tagging and
Dependency Parsing. Hatori et al. (2012)’s CTB-5
scores are reported in Zhang et al. (2014). EAG in
Zhang et al. (2014) denotes the arc-eager model.
(g) denotes greedy trained models.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 STD 97.67 94.28 81.63
M. Zhang+14 EAG 97.76 94.36 81.70
Y. Zhang+15 98.04 94.47 82.01

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83‡ 81.42‡

SegTag+Dep 98.60‡ 94.76‡ 82.60‡

Table 7: The SegTag+Dep model. Note that the
model of Zhang et al. (2015) requires other base
parsers. ‡ denotes that the improvement is statisti-
cally siginificant at p < 0.01 compared with Seg-
TagDep(g) using paired t-test.

3.2.3 Pipeline of Our Joint SegTag and Dep
Model

We use our joint SegTag model for the pipeline
input of the Dep model (SegTag+Dep). Both Seg-
Tag and Dep models are trained and tested by the
beam cost function with beams of size 4. Table
7 presents the results. Our SegTag+Dep model
performs best in terms of the dependency and
word segmentation. The SegTag+Dep model is
better than the full joint model. This is because
most segmentation errors of these models occur
around named entities. Hatori et al. (2012)’s align-
ment step assumes the intra-word dependencies in
words, while named entities do not always have
them. For example, SegTag+Dep model treats
named entity “w[K”, a company name, as one
word, while the SegTagDep model divides this to
“w” (sea) and “[K”, where “[K” could be
used for foreigner’s name. For such words, Seg-
TagDep prefers SH because AP has size-2 step
of the character appending and intra-word depen-
dency resolution, which does not exist for named
entities. This problem could be solved by adding
a special transition AP_named_entity which
is similar to AP but with size-1 step and used

1210

Dependency Parsing(with feature set)

Shi,	 Tianze,	 Liang	 Huang,	 and	 Lillian	 Lee.	 “Fast	 (er)	 Exact	 Decoding	 and	 Global	 Training	 for	 Transition-‐Based	 Dependency	
Parsing	 via	 a	 Minimal	 Feature	 Set.” In EMNLP (2017).

•Positional Features
ming framework to produce the first implementa-
tion of Opn3q exact decoders for arc-hybrid and
arc-eager parsers. We also enable and implement
Opn3q global training methods. Empirically, en-
sembles containing our minimal-feature, globally-
trained and exactly-decoded models produce the
best unlabeled attachment score (UAS) reported
(to our knowledge) on the Chinese Treebank and
the “second-best-in-class” result on the English
Penn Treebank.2

Additionally, we provide a slight update to
the theoretical connections previously drawn by
Gómez-Rodrı́guez, Carroll, and Weir (2008, 2011)
between TBDPs and the graph-based dependency
parsing algorithms of Eisner (1996) and Eisner
and Satta (1999), including results regarding the
arc-eager parsing system.

2 A Minimal Feature Set

TBDPs incrementally process a sentence by mak-
ing transitions through search states representing
parser configurations. Three of the main transition
systems in use today (formal introduction in §3.1)
all maintain the following two data structures in
their configurations: (1) a stack of partially parsed
subtrees and (2) a buffer (mostly) of unprocessed
sentence tokens.

To featurize configurations for use in a scoring
function, it is common to have features that extract
information about the first several elements on the
stack and the buffer, such as their word forms and
part-of-speech (POS) tags. We refer to these as po-
sitional features, as each feature relates to a partic-
ular position in the stack or buffer. Typically, mil-
lions of sparse indicator features (often developed
via manual engineering) are used.

In contrast, Chen and Manning (2014) intro-
duce a feature set consisting of dense word-, POS-,
and dependency-label embeddings. While dense,
these features are for the same 18 positions that
have been typically used in prior work. Re-
cently, Kiperwasser and Goldberg (2016a) and
Cross and Huang (2016a) adopt bi-directional
LSTMs, which have nice expressiveness and
context-sensitivity properties, to reduce the num-
ber of positions considered down to four and three,

2Our ideas were subsequently adapted to the labeled set-
ting by Shi, Wu, Chen, and Cheng (2017) in their submis-
sion to the CoNLL 2017 shared task on Universal Dependen-
cies parsing. Their team achieved the second-highest labeled
attachment score in general and had the top average perfor-
mance on the surprise languages.

Features Arc-standard Arc-hybrid Arc-eager

tÑÐ
s 2,

ÑÐ
s 1,

ÑÐ
s 0,

ÑÐ
b 0u 93.95˘0.12 94.08˘0.13 93.92˘0.04

tÑÐ
s 1,

ÑÐ
s 0,

ÑÐ
b 0u 94.13˘0.06 94.08˘0.05 93.91˘0.07

tÑÐ
s 0,

ÑÐ
b 0u 54.47˘0.36 94.03˘0.12 93.92˘0.07

tÑÐ
b 0u 47.11˘0.44 52.39˘0.23 79.15˘0.06

Min positions Arc-standard Arc-hybrid Arc-eager

K&G 2016a - 4 -
C&H 2016a 3 - -

our work 3 2 2

Table 1: Top: English PTB dev-set UAS% for
progressively smaller sets of positional features,
for greedy parsers with different transition sys-
tems. The “double-arrow” notation indicates vec-
tors produced by a bi-directional LSTM. Internal
lines highlight large performance drop-offs when
a feature is deleted. Bottom: sizes of the minimal
feature sets in Kiperwasser and Goldberg (2016a),
Cross and Huang (2016a), and our work.

for different transition systems, respectively.
This naturally begs the question, what is the

lower limit on the number of positional features
necessary for a parser to perform well? Kiper-
wasser and Goldberg (2016a) reason that for the
arc-hybrid system, the first and second items on
the stack and the first buffer item — denoted by s0,
s1, and b0, respectively — are required; they addi-
tionally include the third stack item, s2, because
it may not be adjacent to the others in the origi-
nal sentence. For arc-standard, Cross and Huang
(2016a) argue for the necessity of s0, s1, and b0.

We address the lower-limit question empiri-
cally, and find that, surprisingly, two positions
suffice for the greedy arc-eager and arc-hybrid
parsers. We also provide empirical support for
Cross and Huang’s argument for the necessity of
three features for arc-standard. In the rest of this
section, we explain our experiments, run only on
an English development set, that support this con-
clusion; the results are depicted in Table 1. We
later explore the implementation implications in
§3-4 and then test-set parsing-accuracy in §6.

We employ the same model architecture as
Kiperwasser and Goldberg (2016a). Specifically,
we first use a bi-LSTM to encode an n-token sen-
tence, treated as a sequence of per-token concate-
nations of word- and POS-tag embeddings, into a
sequence of vectors rÑÐ

w1, . . . ,
ÑÐ
wns, where each

ÑÐ
wi

13

Dependency Parsing(with feature set)

Shi,	 Tianze,	 Liang	 Huang,	 and	 Lillian	 Lee.	 “Fast	 (er)	 Exact	 Decoding	 and	 Global	 Training	 for	 Transition-‐Based	 Dependency	
Parsing	 via	 a	 Minimal	 Feature	 Set.” In EMNLP (2017).

•Results

📍 BGDS16

📍 CH16

📍 DBLMS15
📍 KG16a

📍 KG16b

🌐CFHGD16

🌐DM17

🌐KG16a

🌐KBKDS16

🌐WC16

📍 Our best local

🌐Our arc-eager DP
🌐Our arc-hybrid DP

💼15 Our all global

💼20 KBKDS16 💼5 Our arc-eager DP
💼5 Our arc-hybrid DP

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

93.0 93.5 94.0 94.5 95.0 95.5 96.0

U
A

S
on

 C
TB

 (%
)

UAS on PTB (%)
📍 Local 🌐 Global 📍 Our Local 🌐 Our Global 💼 Ensemble

Figure 2: Comparing our UAS results with results from the literature. x-axis: PTB; y-axis: CTB. Most
datapoint labels give author initials and publication year; citations are in the bibliography. Ensemble
datapoints are annotated with ensemble size. Weiss et al. (2015) and Andor et al. (2016) achieve UAS of
94.26 and 94.61 on PTB with beam search, but did not report CTB results, and are therefore omitted.

dings are initialized uniformly (Glorot and Ben-
gio, 2010). Approximately 1,000 tokens form a
mini-batch for sub-gradient computation. We train
each model for 20 epochs and perform model se-
lection based on development UAS. The proposed
structured loss function is optimized via Adam
(Kingma and Ba, 2015). The neural network com-
putation is based on the python interface to DyNet
(Neubig et al., 2017), and the exact decoding al-
gorithms are implemented in Cython.7

Main Results We implement exact decoders for
the arc-hybrid and arc-eager systems, and present
the test performance of different model configu-
rations in Table 2, comparing global models with
local models. All models use the same decoder
for testing as during the training process. Though
no global decoder for the arc-standard system has
been explored in this paper, its local models are
listed for comparison. We also include an edge-
factored graph-based model, which is convention-
ally trained globally. The edge-factored model
scores bi-LSTM features for each head-modifier
pair; a maximum spanning tree algorithm is used
to find the tree with the highest sum of edge
scores. For this model, we use Dozat and Man-

7See https://github.com/tzshi/dp-parser-emnlp17 .

ning’s (2017) biaffine scoring model, although in
our case the model size is smaller.8

Analogously to the dev-set results given in §2,
on the test data, the minimal feature sets perform
as well as larger ones in locally-trained models.
And there exists a clear trend of global models out-
performing local models for the two different tran-
sition systems on both datasets. This illustrates the
effectiveness of exact decoding and global train-
ing. Of the three types of global models, the arc-
eager arguably has the edge, an empirical finding
resonating with our theoretical comparison of their
model expressiveness.

Comparison with State-of-the-Art Models
Figure 2 compares our algorithms’ results with
those of the state-of-the-art.9 Our models are
competitive and an ensemble of 15 globally-
trained models (5 models each for arc-eager DP,
arc-hybrid DP and edge-factored) achieves 95.33
and 90.22 on PTB and CTB, respectively, reach-

8The same architecture and model size as other transition-
based global models is used for fair comparison.

9We exclude Choe and Charniak (2016), Kuncoro et al.
(2017) and Liu and Zhang (2017), which convert constituent-
based parses to dependency parses. They produce higher PTB
UAS, but access more training information and do not di-
rectly apply to datasets without constituency annotation.

19

Dependency	 Parsing	 with	 exploration	

Miguel	 Ballesteros, Yoav Goldberg, Chris	 Dyer, Noah	 A.	 Smith.	 "Training	 with	 exploration	 improves	 a	 greedy	 stack-‐LSTM	
parser." In	 EMNLP(2016).

•Parsing	 Model

•(1)

•(2)

encoded into a vector pt, which is used to compute
the probability of the parser action at time t as:

p(zt | pt) =
exp

�
g>
ztpt + qzt

�
P

z02A(S,B) exp
�
g>
z0pt + qz0

� , (1)

where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is a
bias term for action z. The set A(S,B) represents
the valid transition actions that may be taken in the
current state. Since pt encodes information about all
previous decisions made by the parser, the chain rule
gives the probability of any valid sequence of parse
transitions z conditional on the input:

p(z | w) =

|z|Y

t=1

p(zt | pt). (2)

The parser is trained to maximize the conditional
probability of taking a “correct” action at each pars-
ing state. The definition of what constitutes a “cor-
rect” action is the major difference between a static
oracle as used by Dyer et al. (2015) and the dynamic
oracle explored here.

Regardless of the oracle, our training implemen-
tation constructs a computation graph (nodes that
represent values, linked by directed edges from each
function’s inputs to its outputs) for the negative log
probability for the oracle transition sequence as a
function of the current model parameters and uses
forward- and backpropagation to obtain the gradi-
ents respect to the model parameters (Lecun et al.,
1998, section 4).

2.1 Training with Static Oracles
With a static oracle, the training procedure com-
putes a canonical reference series of transitions for
each gold parse tree. It then runs the parser through
this canonical sequence of transitions, while keep-
ing track of the state representation pt at each step t,
as well as the distribution over transitions p(zt | pt)

which is predicted by the current classifier for the
state representation. Once the end of the sentence is
reached, the parameters are updated towards maxi-
mizing the likelihood of the reference transition se-
quence (Equation 2), which equates to maximizing
the probability of the correct transition, p(zgt | pt),
at each state along the path.

2.2 Training with Dynamic Oracles
In the static oracle case, the parser is trained to
predict the best transition to take at each parsing
step, assuming all previous transitions were cor-
rect. Since the parser is likely to make mistakes at
test time and encounter states it has not seen dur-
ing training, this training criterion is problematic
(Daumé III et al., 2009; Ross et al., 2011; Gold-
berg and Nivre, 2012; Goldberg and Nivre, 2013,
inter alia). Instead, we would prefer to train the
parser to behave optimally even after making a mis-
take (under the constraint that it cannot backtrack
or fix any previous decision). We thus need to in-
clude in the training examples states that result from
wrong parsing decisions, together with the optimal
transitions to take in these states. To this end we
reconsider which training examples to show, and
what it means to behave optimally on these training
examples. The framework of training with explo-
ration using dynamic oracles suggested by Goldberg
and Nivre (2012; 2013) provides answers to these
questions. While the application of dynamic oracle
training is relatively straightforward, some adapta-
tions were needed to accommodate the probabilistic
training objective. These adaptations mostly follow
Goldberg (2013).

Dynamic Oracles. A dynamic oracle is the com-
ponent that, given a gold parse tree, provides the
optimal set of possible actions to take for any valid
parser state. In contrast to static oracles that derive
a canonical state sequence for each gold parse tree
and say nothing about states that deviate from this
canonical path, the dynamic oracle is well defined
for states that result from parsing mistakes, and they
may produce more than a single gold action for a
given state. Under the dynamic oracle framework,
an action is said to be optimal for a state if the best
tree that can be reached after taking the action is no
worse (in terms of accuracy with respect to the gold
tree) than the best tree that could be reached prior to
taking that action.

Goldberg and Nivre (2013) define the arc-
decomposition property of transition systems, and
show how to derive efficient dynamic oracles for
transition systems that are arc-decomposable.2 Un-
fortunately, the arc-standard transition system does

2Specifically: for every parser configuration p and group of

2006

encoded into a vector pt, which is used to compute
the probability of the parser action at time t as:

p(zt | pt) =
exp

�
g>
ztpt + qzt

�
P

z02A(S,B) exp
�
g>
z0pt + qz0

� , (1)

where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is a
bias term for action z. The set A(S,B) represents
the valid transition actions that may be taken in the
current state. Since pt encodes information about all
previous decisions made by the parser, the chain rule
gives the probability of any valid sequence of parse
transitions z conditional on the input:

p(z | w) =

|z|Y

t=1

p(zt | pt). (2)

The parser is trained to maximize the conditional
probability of taking a “correct” action at each pars-
ing state. The definition of what constitutes a “cor-
rect” action is the major difference between a static
oracle as used by Dyer et al. (2015) and the dynamic
oracle explored here.

Regardless of the oracle, our training implemen-
tation constructs a computation graph (nodes that
represent values, linked by directed edges from each
function’s inputs to its outputs) for the negative log
probability for the oracle transition sequence as a
function of the current model parameters and uses
forward- and backpropagation to obtain the gradi-
ents respect to the model parameters (Lecun et al.,
1998, section 4).

2.1 Training with Static Oracles
With a static oracle, the training procedure com-
putes a canonical reference series of transitions for
each gold parse tree. It then runs the parser through
this canonical sequence of transitions, while keep-
ing track of the state representation pt at each step t,
as well as the distribution over transitions p(zt | pt)

which is predicted by the current classifier for the
state representation. Once the end of the sentence is
reached, the parameters are updated towards maxi-
mizing the likelihood of the reference transition se-
quence (Equation 2), which equates to maximizing
the probability of the correct transition, p(zgt | pt),
at each state along the path.

2.2 Training with Dynamic Oracles
In the static oracle case, the parser is trained to
predict the best transition to take at each parsing
step, assuming all previous transitions were cor-
rect. Since the parser is likely to make mistakes at
test time and encounter states it has not seen dur-
ing training, this training criterion is problematic
(Daumé III et al., 2009; Ross et al., 2011; Gold-
berg and Nivre, 2012; Goldberg and Nivre, 2013,
inter alia). Instead, we would prefer to train the
parser to behave optimally even after making a mis-
take (under the constraint that it cannot backtrack
or fix any previous decision). We thus need to in-
clude in the training examples states that result from
wrong parsing decisions, together with the optimal
transitions to take in these states. To this end we
reconsider which training examples to show, and
what it means to behave optimally on these training
examples. The framework of training with explo-
ration using dynamic oracles suggested by Goldberg
and Nivre (2012; 2013) provides answers to these
questions. While the application of dynamic oracle
training is relatively straightforward, some adapta-
tions were needed to accommodate the probabilistic
training objective. These adaptations mostly follow
Goldberg (2013).

Dynamic Oracles. A dynamic oracle is the com-
ponent that, given a gold parse tree, provides the
optimal set of possible actions to take for any valid
parser state. In contrast to static oracles that derive
a canonical state sequence for each gold parse tree
and say nothing about states that deviate from this
canonical path, the dynamic oracle is well defined
for states that result from parsing mistakes, and they
may produce more than a single gold action for a
given state. Under the dynamic oracle framework,
an action is said to be optimal for a state if the best
tree that can be reached after taking the action is no
worse (in terms of accuracy with respect to the gold
tree) than the best tree that could be reached prior to
taking that action.

Goldberg and Nivre (2013) define the arc-
decomposition property of transition systems, and
show how to derive efficient dynamic oracles for
transition systems that are arc-decomposable.2 Un-
fortunately, the arc-standard transition system does

2Specifically: for every parser configuration p and group of

2006

Dependency	 Parsing	 with	 exploration	

Chris	 Dyer, Miguel	 Ballesteros, Wang	 Ling, Austin	 Matthews, Noah	 A.	 Smith,	 Transition-‐Based	 Dependency	 Parsing	 with	
Stack	 Long	 Short-‐Term	 Memory,	 In	 Proceedings	 of	 the	 53rd	 ACL	 and	 the	 7th	 IIJCNLP(2015)
Miguel	 Ballesteros, Yoav Goldberg, Chris	 Dyer, Noah	 A.	 Smith.	 "Training	 with	 exploration	 improves	 a	 greedy	 stack-‐LSTM	
parser." In	 EMNLP(2016).

•Experiments
•Baseline:	 Dyer	 et	 al.(2015)
•Dynamic	 Oracle:	 for	 error	 states,	 estimate	 the	 best	 tree	 from	
the	 state,	 using	 it	 for	 oracle
•Sample	 negative	 cases

Dependency	 Parsing	 with	 exploration	

Miguel	 Ballesteros, Yoav Goldberg, Chris	 Dyer, Noah	 A.	 Smith.	 "Training	 with	 exploration	 improves	 a	 greedy	 stack-‐LSTM	
parser." In	 EMNLP(2016).

•Results

not have this property. While it is possible to com-
pute dynamic oracles for the arc-standard system
(Goldberg et al., 2014), the computation relies on
a dynamic programming algorithm which is polyno-
mial in the length of the stack. As the dynamic ora-
cle has to be queried for each parser state seen during
training, the use of this dynamic oracle will make the
training runtime several times longer. We chose in-
stead to switch to the arc-hybrid transition system
(Kuhlmann et al., 2011), which is very similar to
the arc-standard system but is arc-decomposable and
hence admits an efficient O(1) dynamic oracle, re-
sulting in only negligible increase to training run-
time. We implemented the dynamic oracle to the
arc-hybrid system as described by Goldberg (2013).

Training with Exploration. In order to expose
the parser to configurations that are likely to result
from incorrect parsing decisions, we make use of the
probabilistic nature of the classifier. During training,
instead of following the gold action, we sample the
next transition according to the output distribution
the classifier assigns to the current configuration.
Another option, taken by Goldberg and Nivre, is to
follow the one-best action predicted by the classifier.
However, initial experiments showed that the one-
best approach did not work well. Because the neural
network classifier becomes accurate early on in the
training process, the one-best action is likely to be
correct, and the parser is then exposed to very few
error states in its training process. By sampling from
the predicted distribution, we are effectively increas-
ing the chance of straying from the gold path during
training, while still focusing on mistakes that receive
relatively high parser scores. We believe further for-
mal analysis of this method will reveal connections
to reinforcement learning and, perhaps, other meth-
ods for learning complex policies.

Taking this idea further, we could increase the
number of error-states observed in the training pro-
cess by changing the sampling distribution so as
to bias it toward more low-probability states. We
do this by raising each probability to the power of
↵ (0 < ↵ 1) and re-normalizing. This trans-
arcs A, if each arc in A can be derived from p, then a valid
tree structure containing all of the arcs in A can also be derived
from p. This is a sufficient condition, but whether it is necessary
is unknown; hence the question of an efficient, O(1) dynamic
oracle for the augmented system is open.

formation keeps the relative ordering of the events,
while shifting probability mass towards less frequent
events. As we show below, this turns out to be very
beneficial for the configurations that make use of
external embeddings. Indeed, these configurations
achieve high accuracies and sharp class distributions
early on in the training process.

The parser is trained to maximize the likelihood of
a correct action zg at each parsing state pt according
to Equation 1. When using the dynamic oracle, a
state pt may admit multiple correct actions zg =

{zgi , . . . , zgk}. Our objective in such cases is the
marginal likelihood of all correct actions,3

p(zg | pt) =
X

zgi2zg
p(zgi | pt). (3)

3 Experiments

Following the same settings of Chen and Manning
(2014) and Dyer et al (2015) we report results4 in
the English PTB and Chinese CTB-5. Table 1 shows
the results of the parser in its different configura-
tions. The table also shows the best result obtained
with the static oracle (obtained by rerunning Dyer et
al. parser) for the sake of comparison between static
and dynamic training strategies.

English Chinese
Method UAS LAS UAS LAS
Arc-standard (Dyer et al.) 92.40 90.04 85.48 83.94
Arc-hybrid (static) 92.08 89.80 85.66 84.03
Arc-hybrid (dynamic) 92.66 90.43 86.07 84.46
Arc-hybrid (dyn., ↵ = 0.75) 92.73 90.60 86.13 84.53
+ pre-training:
Arc-standard (Dyer et al.) 93.04 90.87 86.85 85.36
Arc-hybrid (static) 92.78 90.67 86.94 85.46
Arc-hybrid (dynamic) 93.15 91.05 87.05 85.63
Arc-hybrid (dyn., ↵ = 0.75) 93.56 91.42 87.65 86.21

Table 1: Dependency parsing: English (SD) and Chinese.

The score achieved by the dynamic oracle for En-
glish is 93.56 UAS. This is remarkable given that
the parser uses a completely greedy search proce-
dure. Moreover, the Chinese score establishes the
state-of-the-art, using the same settings as Chen and
Manning (2014).

3A similar objective was used by Riezler et al (2000), Char-
niak and Johnson (2005) and Goldberg (2013) in the context of
log-linear probabilistic models.

4The results on the development sets are similar and only
used for optimization and validation.

2007

Part 5.4: Hybrid Models

IJCNLP 2017 Tutorial 1292017-11-27

Feature Integration

• Model

Meishan Zhang	 and	 Yue	 Zhang. Combining	 Discrete	 and	 Continuous	 Features	 for	 Deterministic	 Transition-‐based	 Dependency	
Parsing.	 In	 proceedings	 of	 EMNLP	 2015,	 Lisboa,	 Portugal,	 September.

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1316–1321,
Lisbon, Portugal, 17-21 September 2015. c�2015 Association for Computational Linguistics.

Combining Discrete and Continuous Features for Deterministic

Transition-based Dependency Parsing

Meishan Zhang and Yue Zhang

Singapore University of Technology and Design
{meishan zhang, yue zhang}@sutd.edu.sg

Abstract

We investigate a combination of a tra-
ditional linear sparse feature model and
a multi-layer neural network model for
deterministic transition-based dependency
parsing, by integrating the sparse features
into the neural model. Correlations are
drawn between the hybrid model and pre-
vious work on integrating word embed-
ding features into a discrete linear model.
By analyzing the results of various parsers
on web-domain parsing, we show that the
integrated model is a better way to com-
bine traditional and embedding features
compared with previous methods.

1 Introduction

Transition-based parsing algorithms construct out-
put syntax trees using a sequence of shift-reduce
actions. They are attractive in computational ef-
ficiency, allowing linear time decoding with de-
terministic (Nivre, 2008) or beam-search (Zhang
and Clark, 2008) algorithms. Using rich non-local
features, transition-based parsers achieve state-of-
the-art accuracies for dependency parsing (Zhang
and Nivre, 2011; Zhang and Nivre, 2012; Bohnet
and Nivre, 2012; Choi and McCallum, 2013;
Zhang et al., 2014).

Deterministic transition-based parsers works
by making a sequence of greedy local deci-
sions (Nivre et al., 2004; Honnibal et al., 2013;
Goldberg et al., 2014; Gómez-Rodrı́guez and
Fernández-González, 2015). They are attractive
by very fast speeds. Traditionally, a linear model
has been used for the local action classifier. Re-
cently, Chen and Manning (2014) use a neural net-
work (NN) to replace linear models, and report im-
proved accuracies.

A contrast between a neural network model and
a linear model is shown in Figure 1 (a) and (b).

· · · · · ·

(a) discrete linear (b) continuous NN

· · · · · ·

(eg. MaltParser) (eg. Chen and Manning (2014))

(c) Turian et al. (2010)

· · · · · · · · ·
transform

(d) Guo et al. (2014)

· · · · · ·

(e) this paper

Figure 1: Five deterministic transition-based
parsers with discrete and continuous features.

A neural network model takes continuous vector
representations of words as inputs, which can be
pre-trained using large amounts of unlabeled data,
thus containing more information. In addition, us-
ing an extra hidden layer, a neural network is ca-
pable of learning non-linear relations between au-
tomatic features, achieving feature combinations
automatically.

Discrete manual features and continuous fea-
tures complement each other. A natural question
that arises from the contrast is whether traditional
discrete features and continuous neural features
can be integrated for better accuracies. We study
this problem by constructing the neural network
shown in Figure 1 (e), which incorporates the dis-
crete input layer of the linear model (Figure 1 (a))
into the NN model (Figure 1 (b)) by conjoining

1316

Feature Integration

• Results

Meishan Zhang	 and	 Yue	 Zhang. Combining	 Discrete	 and	 Continuous	 Features	 for	 Deterministic	 Transition-‐based	 Dependency	
Parsing.	 In	 proceedings	 of	 EMNLP	 2015,	 Lisboa,	 Portugal,	 September.

state x, the score of an action a is defined as

Score(a) = �

⇣ �
�d(x)� �e(x)

�

· (
�!
✓ d,a �

�!
✓ c,a)

⌘
,

where � is the vector concatenation operator.

3.4 Linear model with transformed

embeddings (Guo)

We apply the method of Guo et al. (2014), com-
bining embeddings into the linear baseline by first
transforming into discrete values. Given a state x,
the score of an action is defined as

Score(a) = �

⇣ �
�d(x)� d(�e(x))

�

· (
�!
✓ d,a �

�!
✓ c,a)

⌘
,

where d is a transformation function from real-
value to binary features. We use clustering of em-
beddings for d as it gives better performances ac-
cording to Guo et al. (2014). Following Guo et
al. (2014), we use compounded clusters learnt by
K-means algorithm of different granularities.

3.5 Directly combining linear and neural

features (This)

We directly combine linear and neural features
(Figure 1(e)). Given a state x, the score of an ac-
tion is defined as

Score(a) = �

⇣ �
�d(x)� �h(x)

�

· (
�!
✓ d,a �

�!
✓ c,a)

⌘
,

where �h is the same as the NN baseline. Note
that like d in Guo, �h is also a function that trans-
forms embeddings �e. The main difference is that
it can be tuned in supervised training.

4 Web Domain Experiments

4.1 Setting

We perform experiments on the SANCL 2012 web
data (Petrov and McDonald, 2012), using the Wall
Street Journal (WSJ) training corpus to train the
models and the WSJ development corpus to tune
parameters. We clean the web domain texts fol-
lowing the method of Ma et al. (2014b). Au-
tomatic POS tags are produced by using a CRF
model trained on the WSJ training corpus. The
POS tags are assigned automatically on the train-
ing corpus by ten-fold jackknifing. Table 1 shows
the corpus details.

Domain #Sent #Word TA
WSJ-train 30,060 731,678 97.03
WSJ-dev 1,336 32,092 96.88
WSJ-test 1,640 35,590 97.51
answers 1,744 28,823 91.93

newsgroups 1,195 20,651 93.75
reviews 1,906 28,086 92.66

Table 1: Corpus statistics of our experiments,
where TA denotes POS tagging accuracy.

NN Turian This

88
89
90
91

-T +T

(a) WSJ

NN Turian This

79
80
81
82

-T +T

(b) answers

NN Turian This

79
80
81
82

-T +T

(c) newsgroups

NN Turian This

80
81
82
83

-T +T

(d) reviews

Figure 2: Dev results on fine-tuning (UAS).

Following Chen and Manning (2014), we use
the pre-trained word embedding released by Col-
lobert et al. (2011), and set h = 200 for the hidden
layer size, � = 10�8 for L2 regularization, and
↵ = 0.01 for the initial learning rate of Adagrad.

4.2 Development Results

Fine-tuning of embeddings. Chen and Man-
ning (2014) fine-tune word embeddings in su-
pervised training, consistent with Socher et al.
(2013). Intuitively, fine-tuning embeddings allows
in-vocabulary words to join the parameter space,
thereby giving better fitting to in-domain data.
However, it also forfeits the benefit of large-scale
pre-training, because out-of-vocabulary (OOV)
words do not have their embeddings fine-tuned.
In this sense, the method of Chen and Manning
resembles a traditional supervised sparse linear
model, which can be weak on OOV.

On the other hand, the semi-supervised learning
methods such as Turian et al. (2010) and Guo et
al. (2014), do not fine-tune the word embeddings.
Embeddings are taken as inputs rather than model

1318

Feature	 Optimization	

• Model
• Combine discrete
• Integrate neural

Wang,	 Zhiguo,	 Haitao Mi,	 and	 Nianwen Xue.	 "Feature	 Optimization	 for	 Constituent	 Parsing	 via	 Neural	 Networks." ACL	 (1).	
2015.

w0

…

wm

…

t0

…

tn

…

c0

…

cn

…

… …… …

… …

... ...

p(t|s)

sigmoid

softmax

word embedding one-hot representation

dense real-valued
low-dimensional vector

... suffix1

…

prefix4

…

...

Figure 2: Neural network architecture for con-
stituent parsing, where wi denotes word type unit,
ti denotes POS tag unit, ci denotes constituent la-
bel unit, suffixi and prefixi (1 i 4) de-
notes i-character word suffix or prefix for the first
word in the queue.

(2) the connections between the projection layer
and the hidden layer which are used for learning
an optimal feature representation and (3) the con-
nections between the hidden layer and the output
layer which are used for making accurate pars-
ing predictions. We decided to learn word em-
beddings separately, so that we can take advantage
of a large amount of unlabeled data. The remain-
ing two groups of parameters can be trained si-
multaneously by the back propagation algorithm
(Rumelhart et al., 1988) to maximize the likeli-
hood over the training data.

We also employ three crucial techniques to seek
more effective parameters. First, we utilize mini-
batched AdaGrad (Duchi et al., 2011), in which
the learning rate is adapted differently for differ-
ent parameters at different training steps. With this
technique, we can start with a very large learning
rate which decreases during training, and can thus
perform a far more thorough search within the pa-
rameter space. In our experiments, we got a much
faster convergence rate with slightly better accu-
racy by using the learning rate ↵ = 1 instead of
the commonly-used ↵ = 0.01. Second, we initial-
ize the model parameters by pre-training. Unsu-
pervised pre-training has demonstrated its effec-
tiveness as a way of initializing neural network
models (Erhan et al., 2010). Since our model re-
quires many run-time primitive units (POS tags
and constituent labels), we employ an in-house
shift-reduce parser to parse a large amount of unla-
beled sentences, and pre-train the model with the
automatically parsed data. Third, we utilize the
Dropout strategy to address the overfitting prob-

lem. However, different from Hinton et al. (2012),
we only use Dropout during testing, because we
found that using Dropout during training did not
improve the parsing performance (on the dev set)
while greatly slowing down the training process.

4 Experiment

4.1 Experimental Setting
We conducted experiments on the Penn Chinese
Treebank (CTB) version 5.1 (Xue et al., 2005) and
the Wall Street Journal (WSJ) portion of Penn En-
glish Treebank (Marcus et al., 1993). To fairly
compare with other work, we follow the standard
data division. For Chinese, we allocated Articles
001-270 and 400-1151 as the training set, Articles
301-325 as the development set, and Articles 271-
300 as the testing set. For English, we use sec-
tions 2-21 for training, section 22 for developing
and section 23 for testing.

We also utilized some unlabeled corpora and
used the word2vec2 toolkit to train word em-
beddings. For Chinese, we used the unlabeled
Chinese Gigaword (LDC2003T09) and performed
Chinese word segmentation using our in-house
segmenter. For English, we randomly selected 9
million sentences from our in-house newswire cor-
pus, which has no overlap with our training, test-
ing and development sets. We use Evalb3 toolkit
to evaluate parsing performance.

4.2 Characteristics of Our Model
There are several hyper-parameters in our model,
e.g., the word embedding dimension (wordDim),
the hidden layer node size (hiddenSize), the
Dropout ratio (dropRatio) and the beam size for
inference (beamSize). The choice of these hyper-
parameters may affect the final performance. In
this subsection, we present some experiments to
demonstrate the characteristics of our model, and
select a group of proper hyper-parameters that we
use to evaluate our final model. All the experi-
ments in this subsection were performed on Chi-
nese data and the evaluation is performed on Chi-
nese development set.

First, we evaluated the effectiveness of vari-
ous primitive units. We set wordDim = 300,
hiddenSize = 300, beamSize = 8, and did not
apply Dropout (dropRatio = 0). Table 2 presents
the results. By comparing numbers in other rows

2https://code.google.com/p/word2vec/
3http://nlp.cs.nyu.edu/evalb/

1141

Feature	 Optimization	

• Chinese Results

Wang,	 Zhiguo,	 Haitao Mi,	 and	 Nianwen Xue.	 "Feature	 Optimization	 for	 Constituent	 Parsing	 via	 Neural	 Networks." ACL	 (1).	
2015.

Mix-Train Pre-Train
Auto Sent F1 POS F1 POS

0 87.8 97.0 — —
50K 87.2 96.8 88.4 97.1
100K 88.7 96.9 89.5 97.1
200K 89.2 97.2 89.5 97.4

Table 3: Semi-supervised training for Chinese.

Mix-Train Pre-Train
Auto Sent F1 POS F1 POS

0 89.7 96.6 — —
50K 89.4 96.1 90.2 96.4
100K 89.5 96.0 90.4 96.5
200K 89.2 95.8 90.8 96.7

Table 4: Semi-supervised training for English.

strategy, when we only use 50K automatically
parsed sentences, the performance drops in com-
parison with the model trained without using any
automatically parsed data. When we increase the
automatically parsed data to 100K sentences, the
parsing performance improves about 1 percent but
the POS tagging accuracy drops slightly. When
we further increase the automatically parsed data
to 200K sentences, both the parsing performance
and POS tagging accuracy improve. For the Pre-
Train strategy, the performance of all three config-
urations improves performance against the model
that does not use any automatically parsed data.
The Pre-Train strategy consistently outperforms
the Mix-Train strategy when the same amount of
automatically parsed data is used. Therefore, for
Chinese, the Pre-Train strategy is much more help-
ful, and the more automatically parsed data we use
the better performance we get.

Table 4 presents results of different experimen-
tal configurations for English. The performance
trend for the Mix-Train strategy is different from
that of Chinese. Here, no matter how much auto-
matically parsed data we use, there is a consistent
degradation in performance against the model that
does not use any automatically parsed data at all.
And the more automatically parsed data we use,
the larger the drop in accuracy. For the Pre-Train
strategy, the trend is similar to Chinese. The pars-
ing performance of the Pre-Train setting consis-
tently improves as the size of automatically parsed
data increases.

Type System F1

Ours
Supervised*‡ 83.2
Pretrain-Finetune*‡ 86.6

SI
Petrov and Klein (2007) 83.3
Wang and Xue (2014)‡ 83.6

SE
Zhu et al. (2013)‡ 85.6
Wang and Xue (2014)‡ 86.3

RE
Charniak and Johnson (2005) 82.3
Wang and Zong (2011) 85.7

Table 5: Comparison with the state-of-the-art sys-
tems on Chinese test set. * marks neural network
based systems. ‡ marks shift-reduce parsing sys-
tems.

4.4 Comparing With State-of-the-art
Systems

In this subsection, we present the performance
of our models on the testing sets. We trained
two systems. The first system (“Supervised”)
is trained only with the hand-annotated training
set, and the second system (“Pretrain-Finetune”)
is trained with the Pre-Train strategy described
in subsection 4.3 using additional automatically
parsed data. The best parameters for the two sys-
tems are set based on their performance on the de-
velopment set. To further illustrate the effective-
ness of our systems, we also compare them with
some state-of-the-art systems. We group parsing
systems into three categories: supervised single
systems (SI), semi-supervised single systems (SE)
and reranking systems (RE). Both of our two mod-
els belong to semi-supervised single systems, be-
cause our “Supervised” system utilized word em-
beddings in its input layer.

Table 5 lists the performance of our systems as
well as the state-of-the-art systems on Chinese test
set. Comparing the performance of our two sys-
tems, we see that our “Pretrain-Finetune” system
shows a fairly large gain over the “Supervised”
system. One explanation is that our neural net-
work model is a non-linear model, so the back
propagation algorithm can only reach a local op-
timum. In our “Supervised” system the starting
points are randomly initialized in the parameter
space, so it only reaches local optimum. In com-
parison, our “Pretrain-Finetune” system gets to
see large amount of automatically parsed data, and
initializes the starting points with the pre-trained

1143

Feature	 Optimization	

• English Results

Wang,	 Zhiguo,	 Haitao Mi,	 and	 Nianwen Xue.	 "Feature	 Optimization	 for	 Constituent	 Parsing	 via	 Neural	 Networks." ACL	 (1).	
2015.

Mix-Train Pre-Train
Auto Sent F1 POS F1 POS

0 87.8 97.0 — —
50K 87.2 96.8 88.4 97.1
100K 88.7 96.9 89.5 97.1
200K 89.2 97.2 89.5 97.4

Table 3: Semi-supervised training for Chinese.

Mix-Train Pre-Train
Auto Sent F1 POS F1 POS

0 89.7 96.6 — —
50K 89.4 96.1 90.2 96.4
100K 89.5 96.0 90.4 96.5
200K 89.2 95.8 90.8 96.7

Table 4: Semi-supervised training for English.

strategy, when we only use 50K automatically
parsed sentences, the performance drops in com-
parison with the model trained without using any
automatically parsed data. When we increase the
automatically parsed data to 100K sentences, the
parsing performance improves about 1 percent but
the POS tagging accuracy drops slightly. When
we further increase the automatically parsed data
to 200K sentences, both the parsing performance
and POS tagging accuracy improve. For the Pre-
Train strategy, the performance of all three config-
urations improves performance against the model
that does not use any automatically parsed data.
The Pre-Train strategy consistently outperforms
the Mix-Train strategy when the same amount of
automatically parsed data is used. Therefore, for
Chinese, the Pre-Train strategy is much more help-
ful, and the more automatically parsed data we use
the better performance we get.

Table 4 presents results of different experimen-
tal configurations for English. The performance
trend for the Mix-Train strategy is different from
that of Chinese. Here, no matter how much auto-
matically parsed data we use, there is a consistent
degradation in performance against the model that
does not use any automatically parsed data at all.
And the more automatically parsed data we use,
the larger the drop in accuracy. For the Pre-Train
strategy, the trend is similar to Chinese. The pars-
ing performance of the Pre-Train setting consis-
tently improves as the size of automatically parsed
data increases.

Type System F1

Ours
Supervised*‡ 83.2
Pretrain-Finetune*‡ 86.6

SI
Petrov and Klein (2007) 83.3
Wang and Xue (2014)‡ 83.6

SE
Zhu et al. (2013)‡ 85.6
Wang and Xue (2014)‡ 86.3

RE
Charniak and Johnson (2005) 82.3
Wang and Zong (2011) 85.7

Table 5: Comparison with the state-of-the-art sys-
tems on Chinese test set. * marks neural network
based systems. ‡ marks shift-reduce parsing sys-
tems.

4.4 Comparing With State-of-the-art
Systems

In this subsection, we present the performance
of our models on the testing sets. We trained
two systems. The first system (“Supervised”)
is trained only with the hand-annotated training
set, and the second system (“Pretrain-Finetune”)
is trained with the Pre-Train strategy described
in subsection 4.3 using additional automatically
parsed data. The best parameters for the two sys-
tems are set based on their performance on the de-
velopment set. To further illustrate the effective-
ness of our systems, we also compare them with
some state-of-the-art systems. We group parsing
systems into three categories: supervised single
systems (SI), semi-supervised single systems (SE)
and reranking systems (RE). Both of our two mod-
els belong to semi-supervised single systems, be-
cause our “Supervised” system utilized word em-
beddings in its input layer.

Table 5 lists the performance of our systems as
well as the state-of-the-art systems on Chinese test
set. Comparing the performance of our two sys-
tems, we see that our “Pretrain-Finetune” system
shows a fairly large gain over the “Supervised”
system. One explanation is that our neural net-
work model is a non-linear model, so the back
propagation algorithm can only reach a local op-
timum. In our “Supervised” system the starting
points are randomly initialized in the parameter
space, so it only reaches local optimum. In com-
parison, our “Pretrain-Finetune” system gets to
see large amount of automatically parsed data, and
initializes the starting points with the pre-trained

1143

Google Hybrid Model

•Dependency	 parsing

Weiss, D., Alberti, C., Collins, M., & Petrov, S. (2015). Structured Training for Neural Network Transition-Based Parsing.
ACL.

Google Hybrid Model

•Using	 Chen	 and	 Manning	 features	 for	 perceptron	 training

•Back-‐propagation	 pre-‐training

•Structured	 perceptron	 training

(ℎ1, ℎ2, 𝑃(𝑦))

Weiss, D., Alberti, C., Collins, M., & Petrov, S. (2015). Structured Training for Neural Network Transition-Based Parsing.
ACL.

Google Hybrid Model

Weiss, D., Alberti, C., Collins, M., & Petrov, S. (2015). Structured Training for Neural Network Transition-Based Parsing.
ACL.

•Results

Look-‐Ahead Features

• Model

Jiangming Liu,	 Yue	 Zhang.	 2017.	 Shift-‐Reduce	 Constituent	 Parsing	 with	 Neural	 Lookahead Features.	 In	 Transactions	 of	 the	
Association	 of	 Computational	 Linguistics	 (TACL)

NP

VB

DT NN

NP

VP

S

(a) (b)

DT NNS

The students like

this book

ADJP

JJ

past

CC

and

JJ

present

NP PP

NP

DT NN

the table

IN

on

Word s-type e-type
The [s: S ��NP] [e: Ø]
past [s: ADJP] [e: Ø]
and [s: Ø] [e: Ø]
present [s: Ø] [e: ADJP]
students [s: Ø] [e: NP]
like [s: VP] [e: Ø]
this [s: NP NP] [e: Ø]
book [s: Ø] [e: NP]
on [s: PP] [e: Ø]
the [s: NP] [e: Ø]
table [s: Ø [e: S VP NP PP NP]

Figure 1: Example constituent hierarchies on the sentence “ The past and present students like this book on
the table”. (a) parse tree; (b) constituent hierarchies on words.

each word, we predict both the constituent hierarchy
it starts and the constituent hierarchy it ends, using
them as lookahead features.

The task is challenging in three aspects. First, it is
significantly more difficult compared to simple se-
quence labelling, since two sequences of constituent
hierarchies must be predicted for each word in the
input sequence. Second, for high accuracies, global
features from the full sentence are necessary since
constituent hierarchies contain rich structural infor-
mation. Third, to retain high speed for shift-reduce
parsing, lookahead feature prediction must be exe-
cuted efficiently. It is highly difficult to build such a
model using manual discrete features and structured
search.

Fortunately, sequential recurrent neural networks
(RNNs) are remarkably effective models to encode
the full input sentence. We leverage RNNs for build-
ing our constituent hierarchy predictor. In particu-
lar, a LSTM (Hochreiter and Schmidhuber, 1997)
is used to learn global features automatically from
the input words. For each word, a second LSTM
is then used to generate the constituent hierarchies
greedily using features from the hidden layer of the
first LSTM, in the same way as a neural language
model decoder generating output sentences for ma-
chine translation (Bahdanau et al., 2014). The re-
sulting model solves all the three challenges raised
above. For fully-supervised learning, we learn word
embeddings as a part of the model parameters.

In the standard WSJ (Marcus et al., 1993) and
CTB 5.1 tests (Xue et al., 2005), our parser gives 1.3
F1 and 2.3 F1 improvement, respectively, over the

Initial State [�, 0, false, 0]
Final State [S, n, true,m : 2n <= m <= 4n]

Induction Rules:

SHIFT
[S,i,false,k]

[S|w,i+1,false,k+1]

REDUCE-L/R-X
[S|s1s0,i,false,k]
[S|X,i,false,k+1]

UNARY-X
[S|s0,i,false,k]

[S|X,i,false,k+1]

FINISH
[S,n,false,k]
[S,n,true,k+1]

IDLE
[S,n,true,k]

[S,n,true,k+1]

Figure 2: Deduction system for the baseline shift-
reduce parsing process.

baseline of Zhu et al. (2013), resulting in a accuracy
of 91.7 F1 for English and 85.5 F1 for Chinese,
which are the best for fully-supervised models in
the literature. We release our code, based on ZPar, at
https://github.com/SUTDNLP/LookAheadConparser.

2 Baseline System

We adopt the parser of Zhu et al. (2013) for a base-
line, which is based on the shift-reduce process of
Sagae and Lavie (2005) and the beam search strat-
egy of Zhang and Clark (2011) with the global per-
ceptron training.

Look-‐Ahead Features

• Model

Jiangming Liu,	 Yue	 Zhang.	 2017.	 Shift-‐Reduce	 Constituent	 Parsing	 with	 Neural	 Lookahead Features.	 In	 Transactions	 of	 the	
Association	 of	 Computational	 Linguistics	 (TACL)

stack buffer

DT

The

JJ

past

CC

and

JJ

present

s0 s�

S

NP Ø ADJP Ø

s�cgs s�cge=null s�cgs s�cge=null

Ø Ø Ø ADJP
q0 q�

q�cgs=null q�cge=null q�cgs=null q�cge

NP VB DT NN

DT NNS

s0 s� q0
q�

The students

like this book

S

NP VP VP Ø NP NP Ø Ø

s�cge=null s�cgs s�cge=null q�cgs q�cge=null q�cgs=null

stack buffer

q�cge s�cgs

ADJP

past and present

(a) (b)

incorrect

Constituent
hierarchy

Look-ahead
features

Configuration

Figure 3: Two intermediate states of parsing on the sentence “The past and present students like this book on
the table”. Each item on the stack or buffer has two constituent hierarchies: s-type (left) and e-type (right),
respectively, in the corresponding box. Noted that the e-type constituent hierarchy of the word “students”
are incorrectly predicted and used as soft features in our model.

Templates
s0cgs, s0cge, s1cgs, s1cge

q0cgs, q0cge, q1cgs, q1cge

Table 2: Lookahead feature templates, where s
i

rep-
resents the ith item on the top of the stack and q

i

denotes the ith item in the front end of the buffer.
The symbol c

g

s and c

g

e denote the next level con-
stituent in the s-type hierarchy and e-type hierarchy,
respectively.

3 Global Lookahead Features

The baseline features suffer two limitations, as men-
tioned in the introduction. First, they are relatively
local to the state, considering only the neighbouring
nodes of s0 (top of stack) and q0 (front of buffer).
Second, they do not consider lookahead information
beyond s3, or the syntactic structure of the buffer
and sequence. We use a LSTM to capture full sen-
tential information in linear time, representing such
global information into the baseline parser as a con-
stituent hierarchy for each word. Lookahead fea-
tures are extracted from the constituent hierarchy to
provide top-down guidance for bottom-up parsing.

3.1 Constituent Hierarchy

In a constituency tree, each word can start or end
a constituent hierarchy. As shown in Figure 1, the
word “The” starts a constituent hierarchy “S ! NP”.
In particular, it starts a constituent S in the top level

and then a following constituent NP. The word “ta-
ble” ends a constituent hierarchy “S ! VP ! NP !
PP ! NP”. In particular, it ends a constituent S in
the top level, and then a VP (starting from the word
“like”), an NP (starting from the noun phrase “this
book”), a PP (starting from the word “in”), and fi-
nally an NP (starting from the word “the”). The ex-
traction of constituent hierarchies for each word is
based on unbinarized grammars, reflecting the start
and end in unbinarized trees. The constituent hier-
archy is empty (denoted as �) if the corresponding
words does not start or end a constituent. The con-
stituent hierarchies are added into the shift-reduce
parser as soft features (section 3.2).

Formally, a constituent hierarchy is defined as

[type : c1 ! c2 ! ... ! c

z

],

where c is a constituent label (e.g. NP), “!” rep-
resents the top-down hierarchy, and type can be s

or e, denoting that the current word starts or ends
the constituent hierarchy, respectively, as shown in
Figure 1. Compared with full parsing, the con-
stituent hierarchies associated with each word have
no forced structural dependencies between each
other, and therefore can be modelled more easily,
for each word individually. Serving as soft looka-
head features rather than hard constraints, their inter-
dependencies are not crucial for the main parser.

Look-‐Ahead Features

• Model

Jiangming Liu,	 Yue	 Zhang.	 2017.	 Shift-‐Reduce	 Constituent	 Parsing	 with	 Neural	 Lookahead Features.	 In	 Transactions	 of	 the	
Association	 of	 Computational	 Linguistics	 (TACL)

… windows

…
h1 h2 hn

h1 h2 hn
…

…

concat concat concat

SoftMax

…

c2,1 c2,2 c2,m

…

…
w2

windows

concat

attention pooling

Decoder layer

Input layer

Encoder layer

y1j

x2 xnx1

s�js�j-1

c2_att

Figure 4: Structure of the constituent hierarchy pre-
diction model. c

ij

denotes the jth character of the
word w

i

;
�!
h

i

denotes the left-to-right encoder hid-
den units;

 �
h

i

denotes the right-to-left encoder hid-
den units; s denotes the decoder hidden unit; and y

ij

is the jth label of the word w

i

.

4.2 Encoder Layer
The encoder first uses a window strategy to represent
input nodes with their corresponding local context
nodes. Formally, a windowed word representation
takes the form

x

0
i

= [x
i�win

; ...;x
i

; ...;x
i+win

].

Second, the encoder scans the input sentence and
generates hidden units for each input word using a
recurrent neural network (RNN), which represents
features of the word from the global sequence. For-
mally, given the windowed input nodes x

0
1, x02, ...,

x

0
n

for the sentence w1, w2, ..., w
n

, the RNN layer
calculates a hidden node sequence h1, h2, ..., h

n

.
Long Short-Term Memory (LSTM) mitigates the

vanishing gradient problem in RNN training, by in-
troducing gates (i.e. input i, forget f and output o)

and a cell memory vector c. We use the variation
of Graves and Schmidhuber (2008). Formally, the
values in the LSTM hidden layers are computed as
follows:

i

i

= �(W1x
0
i

+W2hi�1 +W3 � c

i�1 + b1)

f

i

= 1� i

i

c̃

i

= tanh(W4x
0
i

+W5hi�1 + b2)

c

i

= f

i

� c

i�1 + i

i

� c̃

i

o

i

= �(W6x
0
i

+W7hi�1 +W8 � c

i

+ b3)

h

i

= o

i

� tanh(c
i

),

where � is pair-wise multiplication. Further, in or-
der to collect features for x

i

from both x

0
1, .., x0

i�1
and x

0
i+1, ... x

0
n

, we use a bidirectional variation
(Schuster and Paliwal, 1997; Graves et al., 2013).
As shown in Figure 4, the hidden units are generated
by concatenating the corresponding hidden layers of
a left-to-right LSTM

�!
h

i

and a right-to-left LSTM
 �
h

i

,
where h

i

=
�!
h

i

�
 �
h

i

for each word w

i

.

4.3 Decoder Layer
The decoder hidden layer uses two different LSTMs
to generate the s-type and e-type sequences of con-
stituent labels from each encoder hidden output, re-
spectively, as shown in Figure 4. Each constituent
hierarchy is generated bottom-up recurrently. In
particular, a sequence of state vectors is generated
recurrently, with each state yielding a output con-
stituent label. The process starts with a~0 state vector
and ends when a NULL constituent is generated. The
recurrent state transition process is achieved using
LSTM model with the hidden vectors of the encoder
layer being used for context features.

Formally, for the word w

i

, the value of the jth
state unit s

ij

of the LSTM is computed by:

s

ij

= f(s
ij�1, cij , hi)1

,

where the context c
ij

is computed by:

c

ij

=
X

k

�

ijk

h

k

�

ijk

=
e

f(sij�1,hk)

P
k

0 e
f(sij�1,hk0)

1Here, different from typical MT model (Bahdanau et al.,
2014), the chain is predicted sequentially in a feed-forward way
with no feedback of the prediction made. We found that this
fast alternative gives similar results

Look-‐Ahead Features

• Results

Jiangming Liu,	 Yue	 Zhang.	 2017.	 Shift-‐Reduce	 Constituent	 Parsing	 with	 Neural	 Lookahead Features.	 In	 Transactions	 of	 the	
Association	 of	 Computational	 Linguistics	 (TACL)

s-type e-type parser
all 93.76 83.37 90.72
all w/o wins 93.62 83.34 90.58
all w/o chars 93.51 83.21 90.33
all w/o chars & wins 93.12 82.36 89.18

Table 5: Performance of the constituent hierarchy
predictor and the corresponding parser on the WSJ
dev dataset. all denotes the proposed model without
ablation.

and accuracy (Zhu et al., 2013). The optimal train-
ing iteration number is determined on the develop-
ment sets.

5.3 Results of Constituent Hierarchy
Prediction

Table 4 shows the results of constituent hierarchy
prediction, where word and character embeddings
are randomly initialized, and fine-tuned during train-
ing. The third column shows the development pars-
ing accuracies when the labels are used for looka-
head features. As Table 4 shows, when the num-
ber of hidden layer increase, both s-type and e-type
constituent hierarchy prediction improve. The accu-
racies of e-type prediction is relatively lower due to
right-branching in the treebank, which makes e-type
hierarchies longer than s-type hierarchies. In addi-
tion, a 3-layer LSTM does not give significantly im-
provements compared to 2-layer LSTM. For trade-
off between efficiency and accuracy, we choose the
2-layer LSTM as our constituent hierarchy predictor.

Table 5 shows ablation results of constituent hi-
erarchy prediction given by different reduced ar-
chitectures, which include an architecture without
character embeddings and an architecture with nei-
ther character embeddings nor input windows. We
find that the original architecture achieves the high-
est performance on constituent hierarchy predic-
tion, compared to the two baselines. The baseline
only without the character embeddings has relatively
small influence on constituent hierarchy prediction.
On the other hand, the baseline only without the in-
put word windows has relatively smaller influence
on constituent hierarchy prediction. Nevertheless,
both of these two ablation architectures lead to much
lower parsing accuracies. The baseline removing
both the character embeddings and the input word

Parser LR LP F1

Fully-supervised
Ratnaparkhi (1997) 86.3 87.5 86.9
Charniak (2000) 89.5 89.9 89.5
Collins (2003) 88.1 88.3 88.2
Sagae and Lavie (2005)† 86.1 86.0 86.0
Sagae and Lavie (2006)† 87.8 88.1 87.9
Petrov and Klein (2007) 90.1 90.2 90.1
Carreras et al. (2008) 90.7 91.4 91.1
Shindo et al. (2012) N/A N/A 91.1
Zhu et al. (2013)† 90.2 90.7 90.4
Socher et al. (2013)* N/A N/A 90.4
Vinyals et al. (2015)* N/A N/A 88.3
This work 91.3 92.1 91.7
Ensemble
Shindo et al. (2012) N/A N/A 92.4
Vinyals et al. (2015)* N/A N/A 90.5
Rerank
Charniak and Johnson (2005) 91.2 91.8 91.5
Huang (2008) 92.2 91.2 91.7
Semi-supervised
McClosky et al. (2006) 92.1 92.5 92.3
Huang and Harper (2009) 91.1 91.6 91.3
Huang et al. (2010) 91.4 91.8 91.6
Zhu et al. (2013)† 91.1 91.5 91.3
Durrett and Klein (2015)* N/A N/A 91.1
Dyer et al. (2016)*† N/A N/A 92.4

Table 6: Comparison of related work on the WSJ
test set. * denotes neural parsing; † denotes shift-
reduce framework.

windows has relatively low accuracies.

5.4 Final Results
For English, we compare the final results with
previous related work on the WSJ test sets. As
shown in Table 64, our model achieves 1.3%
F1 improvement compared to the baseline parser
with fully-supervised learning (Zhu et al., 2013).
Our model outperforms the state-of-the-art fully-
supervised system (Carreras et al., 2008; Shindo
et al., 2012) by 0.6% F1. In addition, our fully-
supervised model also catches up with many state-
of-the-art semi-supervised models (Zhu et al., 2013;
Huang and Harper, 2009; Huang et al., 2010; Dur-
rett and Klein, 2015) by achieving 91.7% F1 on WSJ
test set. The size of our model is much smaller than
the semi-supervised model of Zhu et al. (2013),

4We treat the methods as semi-supervised if they use pre-
trained word embeddings, word clusters (e.g. Brown clusters)
or extra resources.

s-type e-type parser
all 93.76 83.37 90.72
all w/o wins 93.62 83.34 90.58
all w/o chars 93.51 83.21 90.33
all w/o chars & wins 93.12 82.36 89.18

Table 5: Performance of the constituent hierarchy
predictor and the corresponding parser on the WSJ
dev dataset. all denotes the proposed model without
ablation.

and accuracy (Zhu et al., 2013). The optimal train-
ing iteration number is determined on the develop-
ment sets.

5.3 Results of Constituent Hierarchy
Prediction

Table 4 shows the results of constituent hierarchy
prediction, where word and character embeddings
are randomly initialized, and fine-tuned during train-
ing. The third column shows the development pars-
ing accuracies when the labels are used for looka-
head features. As Table 4 shows, when the num-
ber of hidden layer increase, both s-type and e-type
constituent hierarchy prediction improve. The accu-
racies of e-type prediction is relatively lower due to
right-branching in the treebank, which makes e-type
hierarchies longer than s-type hierarchies. In addi-
tion, a 3-layer LSTM does not give significantly im-
provements compared to 2-layer LSTM. For trade-
off between efficiency and accuracy, we choose the
2-layer LSTM as our constituent hierarchy predictor.

Table 5 shows ablation results of constituent hi-
erarchy prediction given by different reduced ar-
chitectures, which include an architecture without
character embeddings and an architecture with nei-
ther character embeddings nor input windows. We
find that the original architecture achieves the high-
est performance on constituent hierarchy predic-
tion, compared to the two baselines. The baseline
only without the character embeddings has relatively
small influence on constituent hierarchy prediction.
On the other hand, the baseline only without the in-
put word windows has relatively smaller influence
on constituent hierarchy prediction. Nevertheless,
both of these two ablation architectures lead to much
lower parsing accuracies. The baseline removing
both the character embeddings and the input word

Parser LR LP F1

Fully-supervised
Ratnaparkhi (1997) 86.3 87.5 86.9
Charniak (2000) 89.5 89.9 89.5
Collins (2003) 88.1 88.3 88.2
Sagae and Lavie (2005)† 86.1 86.0 86.0
Sagae and Lavie (2006)† 87.8 88.1 87.9
Petrov and Klein (2007) 90.1 90.2 90.1
Carreras et al. (2008) 90.7 91.4 91.1
Shindo et al. (2012) N/A N/A 91.1
Zhu et al. (2013)† 90.2 90.7 90.4
Socher et al. (2013)* N/A N/A 90.4
Vinyals et al. (2015)* N/A N/A 88.3
This work 91.3 92.1 91.7
Ensemble
Shindo et al. (2012) N/A N/A 92.4
Vinyals et al. (2015)* N/A N/A 90.5
Rerank
Charniak and Johnson (2005) 91.2 91.8 91.5
Huang (2008) 92.2 91.2 91.7
Semi-supervised
McClosky et al. (2006) 92.1 92.5 92.3
Huang and Harper (2009) 91.1 91.6 91.3
Huang et al. (2010) 91.4 91.8 91.6
Zhu et al. (2013)† 91.1 91.5 91.3
Durrett and Klein (2015)* N/A N/A 91.1
Dyer et al. (2016)*† N/A N/A 92.4

Table 6: Comparison of related work on the WSJ
test set. * denotes neural parsing; † denotes shift-
reduce framework.

windows has relatively low accuracies.

5.4 Final Results
For English, we compare the final results with
previous related work on the WSJ test sets. As
shown in Table 64, our model achieves 1.3%
F1 improvement compared to the baseline parser
with fully-supervised learning (Zhu et al., 2013).
Our model outperforms the state-of-the-art fully-
supervised system (Carreras et al., 2008; Shindo
et al., 2012) by 0.6% F1. In addition, our fully-
supervised model also catches up with many state-
of-the-art semi-supervised models (Zhu et al., 2013;
Huang and Harper, 2009; Huang et al., 2010; Dur-
rett and Klein, 2015) by achieving 91.7% F1 on WSJ
test set. The size of our model is much smaller than
the semi-supervised model of Zhu et al. (2013),

4We treat the methods as semi-supervised if they use pre-
trained word embeddings, word clusters (e.g. Brown clusters)
or extra resources.

Look-‐Ahead	 Features

• Results

Jiangming Liu,	 Yue	 Zhang.	 2017.	 Shift-‐Reduce	 Constituent	 Parsing	 with	 Neural	 Lookahead Features.	 In	 Transactions	 of	 the	
Association	 of	 Computational	 Linguistics	 (TACL)

Parser LR LP F1

Fully-supervised
Charniak (2000) 79.6 82.1 80.8
Bikel (2004) 79.3 82.0 80.6
Petrov and Klein (2007) 81.9 84.8 83.3
Zhu et al. (2013)† 82.1 84.3 83.2
Wang et al. (2015)‡ N/A N/A 83.2
This work 85.2 85.9 85.5
Rerank
Charniak and Johnson (2005) 80.8 83.8 82.3
Semi-supervised
Zhu et al. (2013)† 84.4 86.8 85.6
Wand and Xue (2014)‡ N/A N/A 86.3
Wang et al. (2015)‡ N/A N/A 86.6
Dyer et al. (2016)*† N/A N/A 82.7

Table 7: Comparison of related work on the CTB5.1
test set. * denotes neural parsing; † denotes shift-
reduce framework; ‡ denotes joint POS tagging and
parsing.

which contains rich features from a large automat-
ically parsed corpus. In contrast, our model is about
the same in size compared to the baseline parser.

We carry out Chinese experiments with the same
models, and compare the final results with previous
related work on the CTB test set. As shown in Table
7, our model achieves 2.3% F1 improvement com-
pared to the state-of-the-art baseline system with
fully-supervised learning (Zhu et al., 2013), which
are by far the best results in the literature. In ad-
dition, our fully-supervised model is also compara-
ble to many state-of-the-art semi-supervised models
(Zhu et al., 2013; Wang and Xue, 2014; Wang et al.,
2015; Dyer et al., 2016) by achieving 85.5% F1 on
the CTB test set. Wang and Xue (2014) and Wang et
al. (2015) do joint POS tagging and parsing.

5.5 Comparison of Speed

Table 8 shows the running times of various parsers
on test sets on a Intel 2.2 GHz processor with 16G
memory. Our parsers are much faster than the re-
lated parser with the same shift-reduce framework
(Sagae and Lavie, 2005; Sagae and Lavie, 2006).
Compared to the baseline parser, our parser gives
significant improvement on accuracies (90.4% to
91.7% F1) at the speed of 79.2 sentences per sec-

Parser #Sent/Second
Ratnaparkhi (1997) Unk
Collins (2003) 3.5
Charniak (2000) 5.7
Sagae and Lavie (2005) 3.7
Sagae and Lavie (2006) 2.2
Petrov and Klein (2007) 6.2
Carreras et al. (2008) Unk
Zhu et al. (2013) 89.5
This work 79.2

Table 8: Comparison of running times on the test
set, where the time for loading models is excluded.
The running times of related parsers are taken from
Zhu et al. (2013).

ond5, in contrast to 89.5 sentences per second on the
standard WSJ benchmark.

6 Errors Analysis

We conduct error analysis by measuring: parsing ac-
curacies against different phrase types, constituents
of different span lengths, and different sentence
lengths.

6.1 Phrase Type

Table 9 shows the accuracies of the baseline and the
final parsers with lookahead features on 9 common
phrase types. As the results show, while the parser
with lookahead features achieves improvements on
all of the frequent phrase types, there are relatively
more improvements on constituent VP, S, SBAR and
WHNP.

The constituent hierarchy predictor has relatively
better performance on s-type labels for the con-
stituents VP and WHNP, which are prone to errors
by the baseline system. The constituent hierarchy
can give guidance to the constituent parser for tack-
ling the challenges. Compared to the s-type con-
stituent hierarchy, the e-type constituent hierarchy
is relatively more difficult to predict, particularly
for the constituents with long spans such as VP, S
and SBAR. Despite this, the e-type constituent hi-
erarchies with relatively low accuracies also benefit
prediction of constituents with long spans.

5The constituent hierarchy prediction is excluded. The cost
of this step is far less than the cost of parsing, and can be elimi-
nated by pipelining the constituent hierarchy prediction and the
shift-reduce decoder.

Look-‐Ahead	 Features

• Results

Jiangming Liu,	 Yue	 Zhang.	 2017.	 Shift-‐Reduce	 Constituent	 Parsing	 with	 Neural	 Lookahead Features.	 In	 Transactions	 of	 the	
Association	 of	 Computational	 Linguistics	 (TACL)

Parser LR LP F1

Fully-supervised
Charniak (2000) 79.6 82.1 80.8
Bikel (2004) 79.3 82.0 80.6
Petrov and Klein (2007) 81.9 84.8 83.3
Zhu et al. (2013)† 82.1 84.3 83.2
Wang et al. (2015)‡ N/A N/A 83.2
This work 85.2 85.9 85.5
Rerank
Charniak and Johnson (2005) 80.8 83.8 82.3
Semi-supervised
Zhu et al. (2013)† 84.4 86.8 85.6
Wand and Xue (2014)‡ N/A N/A 86.3
Wang et al. (2015)‡ N/A N/A 86.6
Dyer et al. (2016)*† N/A N/A 82.7

Table 7: Comparison of related work on the CTB5.1
test set. * denotes neural parsing; † denotes shift-
reduce framework; ‡ denotes joint POS tagging and
parsing.

which contains rich features from a large automat-
ically parsed corpus. In contrast, our model is about
the same in size compared to the baseline parser.

We carry out Chinese experiments with the same
models, and compare the final results with previous
related work on the CTB test set. As shown in Table
7, our model achieves 2.3% F1 improvement com-
pared to the state-of-the-art baseline system with
fully-supervised learning (Zhu et al., 2013), which
are by far the best results in the literature. In ad-
dition, our fully-supervised model is also compara-
ble to many state-of-the-art semi-supervised models
(Zhu et al., 2013; Wang and Xue, 2014; Wang et al.,
2015; Dyer et al., 2016) by achieving 85.5% F1 on
the CTB test set. Wang and Xue (2014) and Wang et
al. (2015) do joint POS tagging and parsing.

5.5 Comparison of Speed

Table 8 shows the running times of various parsers
on test sets on a Intel 2.2 GHz processor with 16G
memory. Our parsers are much faster than the re-
lated parser with the same shift-reduce framework
(Sagae and Lavie, 2005; Sagae and Lavie, 2006).
Compared to the baseline parser, our parser gives
significant improvement on accuracies (90.4% to
91.7% F1) at the speed of 79.2 sentences per sec-

Parser #Sent/Second
Ratnaparkhi (1997) Unk
Collins (2003) 3.5
Charniak (2000) 5.7
Sagae and Lavie (2005) 3.7
Sagae and Lavie (2006) 2.2
Petrov and Klein (2007) 6.2
Carreras et al. (2008) Unk
Zhu et al. (2013) 89.5
This work 79.2

Table 8: Comparison of running times on the test
set, where the time for loading models is excluded.
The running times of related parsers are taken from
Zhu et al. (2013).

ond5, in contrast to 89.5 sentences per second on the
standard WSJ benchmark.

6 Errors Analysis

We conduct error analysis by measuring: parsing ac-
curacies against different phrase types, constituents
of different span lengths, and different sentence
lengths.

6.1 Phrase Type

Table 9 shows the accuracies of the baseline and the
final parsers with lookahead features on 9 common
phrase types. As the results show, while the parser
with lookahead features achieves improvements on
all of the frequent phrase types, there are relatively
more improvements on constituent VP, S, SBAR and
WHNP.

The constituent hierarchy predictor has relatively
better performance on s-type labels for the con-
stituents VP and WHNP, which are prone to errors
by the baseline system. The constituent hierarchy
can give guidance to the constituent parser for tack-
ling the challenges. Compared to the s-type con-
stituent hierarchy, the e-type constituent hierarchy
is relatively more difficult to predict, particularly
for the constituents with long spans such as VP, S
and SBAR. Despite this, the e-type constituent hi-
erarchies with relatively low accuracies also benefit
prediction of constituents with long spans.

5The constituent hierarchy prediction is excluded. The cost
of this step is far less than the cost of parsing, and can be elimi-
nated by pipelining the constituent hierarchy prediction and the
shift-reduce decoder.

