Part 6: Applications of Structure



Shallow Learning

The final task, e.g., entity relation extraction
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Deep Learning

The final task, e.g., entity relation extraction
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A Question

* |s Parsing or Structure Necessary?

Stanford Sentiment TreeBank 49.8 / 50.7 (Segment) 50.4

Binary Sentiment Classification 79.0 774
Question-Answer Matching 56.4 55.8
Semantic .R.elat.lonshlp 75 2 76.7
Classification
Discourse Parsing 57.5 56.4

Jiwei Li, Minh-Thang Luong, Dan Jurafsky and Eduard Hovy. When Are Tree Structures Necessary
for Deep Learning of Representations? EMNLP, 2015.
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How to Use Tree or Graph Structures?

As Information Extraction Rules
As Input Features

As Input Structures

As Structured Prediction
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As Information Extraction Rules

* For example
— Polarity-target pair extraction

* Problem
— The extraction rules are very complex
— The parsing results are inexact
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As Information Extraction Rules

Sentence compression based PT pair extraction
— Simplify the extraction rules
— Improve the parsing accuracy
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* Use a sequence labeling model to compress sentences
* The PT pair extraction performance improves 3%

Wanxiang Che, Yanyan Zhao, Honglei Guo, Zhong Su, Ting Liu. Sentence Compression for Aspect-Based
Sentiment Analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2015, 23(12)



How to Use Tree or Graph Structures?
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Path Features

* For Example
— Semantic Role Labeling (SRL), Relation Extraction (RC)

AM-LOC Entity-Destination(eq, e2)

UNESCO is holding its meetings in Paris People[.,; have moved into downtown[,

(a) Semantic Role Labeling. (b) Relation Classification.

* The parsing path features are very important
— People <--> downtown: nsubj €< moved =2 nmod

* But they are difficult to be designed and very sparse



Path Features

* Use LSTMs to represent paths
* All of word, POS tags and relations can be inputted

next layer
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Michael Roth and Mirella Lapata. Neural Semantic Role Labeling with Dependency Path Embeddings. ACL 2016.
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Joint learning of SRL and RC

* Multi-task learning

| UNESCO' is { holding its meetings in Paris
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Global Context Representation w - -
| Syntactic Path Representation

Jiang Guo, Wanxiang Che, Haifeng Wang and Ting Liu. A Unified Architecture for Semantic Role Labeling and Relation Classification.
Coling 2016.
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Hidden Units of Parsing as Features

* The hidden units for parsing include soft syntactic information
* These can help applications, such as relation extraction
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Meishan Zhang, Yue Zhang and Guohong Fu. End-to-End Neural Relation Extraction with Global Optimization.
EMNLP 2017.
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How to Use Tree or Graph Structures?

As Information Extraction Rules
As Input Features
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Recurrent vs. Recursive Neural Networks

« Recurrent Neural Networks

— Composing sequentially
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 Recursive Neural Networks

— Use parse trees as input structures
— Composing according to parsing structures
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Richard Socher, Cliff Chiung-Yu Lin, Andrew
Y. Ng and Christopher D. Manning. Parsing

Natural Scenes And Natural Language With

Recursive Neural Networks. ICML 2011.



Tree-LSTMs

« Standard LSTM e  Tree-LSTM
output vector output vector T \ A:I:I:II f‘;;gtzt output
output gate —>$ $4— output gate / A \i\
output gate
i ..
SHRE R SO -
input gate *»T forget gate T<— input gate .. A /./ .
input gate
input vector input vector \}Mm ?
/ A forget input
step t stept+1 el gate

» Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic
representations from tree-structured long short-term memory networks. ACL 2015.

« Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-term memory over recursive
structures. ICML 2015.
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Tree-LSTMs

ij=0 (W“)xj +UOR, + b<@'>) ,

fir=0 (W(f)xj +UDhy + b(f)) :

0j =0 (W(O)xj + U, + b(")) :

Uj = tanh (W(u)ﬂfj + U(u)ﬁj + b(u)) ,

¢ =1i;0ui+ Y fix®ck,
keC(j)

hj = 0j ® tanh(cj),

» Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic
representations from tree-structured long short-term memory networks. ACL 2015.

« Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-term memory over recursive
structures. ICML 2015.
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Graph-LSTMs
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The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the L858E point mutation on exon-21 was noted in 10.
' NEXTSENT
1

All patients were treated with gefitinib and showed a partial response.
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Peng, N., Poon, H., Quirk, C., Toutanova, K., & Yih, W. 2017 Apr 5. Cross-Sentence N-ary Relation
Extraction with Graph LSTMs. Transactions of the Association for Computational Linguistics.
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Neural Machine Translation
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Dependency Decoder

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li and Ming Zhou. Sequence-to-Dependency Neural
Machine Translation. ACL 2017.
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How to Use Tree or Graph Structures?
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As Input Structures
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Event Extraction

e Event Extraction as Dependency Parsing

™

‘tax.Hacts as a costimulatory signal ‘for {GM-CSF} and {IL-Z‘ gene transcription| ...

Prot Positive Regulation Prot Prot Transcription
(x2) (x2)

David McClosky, Mihai Surdeanu, and Christopher D. Manning. Event Extraction as Dependency Parsing. ACL 2011.
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Disfluency Detection

* Disfluency detection for speech recognition

[ want a flight [ 10 Boston + {um} to Denver |
RM IM RP

* Transition System <Q, §, B, A>
— output (O) : represent the words that have been labeled as fluent
— stack (S) : represent the partially constructed disfluency chunk
— buffer (B) : represent the sentences that have not yet been processed

— action (A) : represent the complete history of actions taken by the
transition system

e OUT: which moves the first word in the buffer to the output and clears out the
stack if it is not empty

* DEL: which moves the first word in the buffer to the stack

Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan Zhang and Ting Liu. Transition-Based Disfluency Detection
using LSTMs. EMINLP 2017.



Disfluency Detection

* An Example of transition-based disfluency detection

Step  Action Output Stack Buffer

0 (1 [l [a, flight, to, boston, to, denver]

1 ouT [a] [1 [flight, to, boston, to, denver]

2 OuUT [a, flight] [ [to, boston, to, denver]

3 DEL [a, flight] [to] [boston, to, denver]

4 DEL [a, flight] [to, boston] [to, denver]

5 ouT [a, flight, to] [ [denver]

6 OuT [a, flight, to, denver] [] (]
Method P R F1
Our 91.1 84.1 87.5
Attention-based (Wang et al., 2016) | 91.6 82.3 86.7

e Results Bi-LSTM (Zayats et al., 2016) 91.8 80.6 85.9

semi-CRF (Ferguson et al., 2015) 90.0 81.2 854
UBT (Wu et al., 2015) 90.3 80.5 85.1
M>3N (Qian and Liu, 2013) - - 841

Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan Zhang and Ting Liu. Transition-Based Disfluency Detection
using LSTMs. EMNLP 2017.
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Summary

As Information Extraction Rules
As Input Features

As Input Structures

As Structured Prediction



Course Summarization

Lexical, Syntactic and Semantic Analysis

— Structured Prediction (Segmentation, Tagging and Parsing)
Deep Learning

— Representation Learning

— End-to-end Learning

Traditional Methods
— Graph-based and Transition-based

Neural Network Methods
— Graph-based and Transition-based

Applications



